Northwest Area Shoreline Countermeasures Manual and Matrices

9420	North	west A	rea Sł	noreline Countermeasures Manua	l and
	Matrie	ces			9420-1
	9420.1	Introdu	ction		
	9420.2	Shorelin	ne Evalu	ation and Mapping	
	94	20.2.1		tives	
	94	20.2.2		ine Evaluation Process	
	94	20.2.3	Guide	lines for Shoreline Surveys	
	9420.3	Shorelin		s and Sensitive Resources	
	94	20.3.1		ine Types	
		9420.3.		ESI 1 – Exposed Rocky Cliff Face & Vertica	
		Wa	alls or Pi	ers	
		9420.3.		ESI 2 – Exposed Wave-Cut Platforms	
		9420.3.	1.3	ESI 3 – Fine to Medium Grained Sand Beach	
		Un	vegetate	ed Steep River Banks	
		9420.3.	•	ESI 4 – Coarse Grained Sand Beaches	
		9420.3.	1.5	ESI 5 – Mixed Sand and Gravel Beaches	
		9420.3.	1.6	ESI 6A – Gravel Beaches – Pebbles to Cobbl	es 9420-8
		9420.3.	1.7	ESI 6B – Gravel Beaches – Cobbles to Bould	lers 9420-9
		9420.3.	1.8	ESI 6C – Rip Rap	
		9420.3.	1.9	ESI 7 – Exposed Tidal Flats	
		9420.3.	1.10	ESI 8A – Sheltered Vertical Rocky Shores &	
		Ve	rtical, M	lan-Made Structures	
		9420.3.		ESI 8B – Sheltered Rubble Slope	
		9420.3.	1.12	ESI 9A – Sheltered Tidal Flats of Sand and M	/Iud 9420-12
		9420.3.	1.13	ESI 9B – Sheltered Vegetated Low Bank	
		9420.3.	1.14	ESI 10 – Salt & Fresh-Water Marshes (Herba	
		&	Woody '	Vegetation)	
		9420.3.	•	Special Considerations	
	9420.4	Shoreli	ne Coun	termeasure Methods Using Conventional Resp	
	Te	echnology	,		
	94	20.4.1	No Ac	tion	
		9420.4.	1.1	Objective	
		9420.4.	1.2	Description	
		9420.4.	1.3	Applicable Shoreline Types	
		9420.4.	1.4	When to Use	
		9420.4.	1.5	Biological Constraints	

9420.4.2 Manual Removal of Oil 9420-18 9420.4.2.1 Objective 9420-18 9420.4.2.2 Description 9420-18 9420.4.2.3 Applicable Shoreline Types 9420-18 9420.4.2.4 When to Use 9420-18 9420.4.2.5 Biological Constraints 9420-18 9420.4.2.6 Environmental Effects 9420-18 9420.4.3.1 Objective 9420-18 9420.4.3.2 Description 9420-18 9420.4.3.3 Applicable Shoreline Types 9420-18 9420.4.3.4 When to Use 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.4 Oiled Debris Removal 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-20	9420.4.1.	6 Environmental Effects	9420-17
9420.4.2.2 Description 9420-18 9420.4.2.3 Applicable Shoreline Types 9420-18 9420.4.2.4 When to Use 9420-18 9420.4.2.5 Biological Constraints 9420-18 9420.4.2.6 Environmental Effects 9420-18 9420.4.3 Passive Collection of Oil (Sorbents) 9420-18 9420.4.3 Description 9420-18 9420.4.3.1 Objective 9420-18 9420.4.3.2 Description 9420-18 9420.4.3.3 Applicable Shoreline Types 9420-19 9420.4.3.4 When to Use 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.3.6 Environmental Effects 9420-19 9420.4.4 Objective 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-19 9420.4.5.7 Trenching/Recovery Wells 9420-20 9420.4.5.8 Biological Constraints 9420-20	9420.4.2	Manual Removal of Oil	9420-18
9420.4.2.2 Description	9420.4.2.	1 Objective	9420-18
9420.4.2.4 When to Use. 9420.18 9420.4.2.5 Biological Constraints. 9420.18 9420.4.2.6 Environmental Effects 9420.18 9420.4.3 Passive Collection of Oil (Sorbents). 9420.18 9420.4.3 Passive Collection of Oil (Sorbents). 9420.18 9420.4.3.1 Objective 9420.18 9420.4.3.2 Description 9420.18 9420.4.3.4 When to Use 9420.19 9420.4.3.5 Biological Constraints. 9420.19 9420.4.3.6 Environmental Effects 9420.19 9420.4.4 Oiled Debris Removal. 9420.19 9420.4.4.1 Objective 9420.19 9420.4.4.3 Applicable Shoreline Types 9420.19 9420.4.4.4 When to Use 9420.19 9420.4.4.3 Applicable Shoreline Types 9420.19 9420.4.4.4 When to Use 9420.19 9420.4.4.5 Biological Constraints. 9420.19 9420.4.5 Biological Constraints. 9420.20 9420.4.5 Biological Constraints. 9420.20 9420.4.5 Description	9420.4.2.		
9420.4.2.4 When to Use. 9420.18 9420.4.2.5 Biological Constraints. 9420.18 9420.4.2.6 Environmental Effects 9420.18 9420.4.3 Passive Collection of Oil (Sorbents). 9420.18 9420.4.3 Passive Collection of Oil (Sorbents). 9420.18 9420.4.3.1 Objective 9420.18 9420.4.3.2 Description 9420.18 9420.4.3.4 When to Use 9420.19 9420.4.3.5 Biological Constraints. 9420.19 9420.4.3.6 Environmental Effects 9420.19 9420.4.4 Oiled Debris Removal. 9420.19 9420.4.4.1 Objective 9420.19 9420.4.4.3 Applicable Shoreline Types 9420.19 9420.4.4.4 When to Use 9420.19 9420.4.4.3 Applicable Shoreline Types 9420.19 9420.4.4.4 When to Use 9420.19 9420.4.4.5 Biological Constraints. 9420.19 9420.4.5 Biological Constraints. 9420.20 9420.4.5 Biological Constraints. 9420.20 9420.4.5 Description	9420.4.2.	3 Applicable Shoreline Types	9420-18
9420.4.2.6 Environmental Effects 9420-18 9420.4.3 Passive Collection of Oil (Sorbents) 9420-18 9420.4.3.1 Objective 9420-18 9420.4.3.2 Description 9420-18 9420.4.3.3 Applicable Shoreline Types 9420-19 9420.4.3.4 When to Use 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.3.6 Environmental Effects 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.5 Biological Constraints. 9420-19 9420.4.5.4 Biological Constraints. 9420-20 9420.4.5.5 Biological Constraints. 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.5.7 Description 9420-20 9420.4.5.8 Biological Constraints. 9420-20	9420.4.2.		
9420.4.3 Passive Collection of Oil (Sorbents)	9420.4.2.	5 Biological Constraints	9420-18
9420.4.3.1Objective9420-189420.4.3.2Description9420-189420.4.3.3Applicable Shoreline Types9420-189420.4.3.4When to Use9420-199420.4.3.5Biological Constraints9420-199420.4.3.6Environmental Effects9420-199420.4.3Description9420-199420.4.4Oiled Debris Removal9420-199420.4.4Diective9420-199420.4.4.2Description9420-199420.4.4.3Applicable Shoreline Types9420-199420.4.4.4When to Use9420-199420.4.4.5Biological Constraints9420-199420.4.4.6Environmental Effects9420-209420.4.5Trenching/Recovery Wells9420-209420.4.5.1Objective9420-209420.4.5.2Description9420-209420.4.5.3Applicable Shoreline Types9420-209420.4.5.4When to Use9420-209420.4.5.5Biological Constraints9420-209420.4.5.6Environmental Effects9420-209420.4.5.6Environmental Effects9420-209420.4.5.6Environmental Effects9420-209420.4.6.1Objective9420-209420.4.6.2Description9420-219420.4.6.3Applicable Shoreline Types9420-219420.4.6.4When to Use9420-219420.4.6.5Biological Constraints9420-219420.4.6.4When to Use9420-219420.4.6.5 <td>9420.4.2.</td> <td>6 Environmental Effects</td> <td> 9420-18</td>	9420.4.2.	6 Environmental Effects	9420-18
9420.4.3.2 Description 9420-18 9420.4.3.3 Applicable Shoreline Types 9420-18 9420.4.3.4 When to Use 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.3.6 Environmental Effects 9420-19 9420.4.4 Oiled Debris Removal 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.3 Applicable Constraints 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-20 9420.	9420.4.3	Passive Collection of Oil (Sorbents)	9420-18
9420.4.3.2 Description 9420-18 9420.4.3.3 Applicable Shoreline Types 9420-18 9420.4.3.4 When to Use 9420-19 9420.4.3.5 Biological Constraints 9420-19 9420.4.3.6 Environmental Effects 9420-19 9420.4.4 Oiled Debris Removal 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.3 Applicable Constraints 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-20 9420.	9420.4.3.	1 Objective	9420-18
9420.4.3.4 When to Use	9420.4.3.		
9420.4.3.5 Biological Constraints 9420-19 9420.4.3.6 Environmental Effects 9420-19 9420.4.4 Oiled Debris Removal 9420-19 9420.4.4 Objective 9420-19 9420.4.4.1 Objective 9420-19 9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.5 Biological Constraints 9420-20 9420.4.5.5 Trenching/Recovery Wells 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Objective 9420-20 9420.4.6 Objective 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 <td>9420.4.3.</td> <td>3 Applicable Shoreline Types</td> <td>9420-18</td>	9420.4.3.	3 Applicable Shoreline Types	9420-18
9420.4.3.6 Environmental Effects 9420-19 9420.4.4 Oiled Debris Removal 9420-19 9420.4.4 Objective 9420-19 9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.5 Biological Constraints 9420-20 9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-20 9420.4.6.3 Applicable Shoreline Types 9420-20 9420.4.6.4 When to Use 9420-21 9420.4.6.5 </td <td>9420.4.3.</td> <td></td> <td></td>	9420.4.3.		
9420.4.4 Oiled Debris Removal 9420-19 9420.4.4.1 Objective 9420-19 9420.4.2 Description 9420-19 9420.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-20 9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6 Objective 9420-20 9420.4.6 Description 9420-20 9420.4.6 Description 9420-20 9420.4.6 Diective 9420-20 9420.4.6 Description 9420-20 9420.4.6 Description <td>9420.4.3.</td> <td>5 Biological Constraints</td> <td> 9420-19</td>	9420.4.3.	5 Biological Constraints	9420-19
9420.4.4.1 Objective 9420-19 9420.4.2 Description 9420-19 9420.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-20 9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6 Description 9420-20 9420.4.6 Description 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6 Description 9420-20 9420.4.6 Biological Constraints 9420-20 9420.4.6 When to Use 9420-21 9420.4.6.4	9420.4.3.	6 Environmental Effects	9420-19
9420.4.4.2 Description 9420-19 9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-20 9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5 Description 9420-20 9420.4.5 Biological Constraints 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6 Description 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Con	9420.4.4	Oiled Debris Removal	9420-19
9420.4.4.3 Applicable Shoreline Types 9420-19 9420.4.4.4 When to Use 9420-19 9420.4.4.5 Biological Constraints 9420-19 9420.4.4.6 Environmental Effects 9420-20 9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5 Description 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21	9420.4.4.	1 Objective	9420-19
9420.4.4.4 When to Use	9420.4.4.	2 Description	9420-19
9420.4.4.4 When to Use	9420.4.4.	3 Applicable Shoreline Types	9420-19
9420.4.4.5 Biological Constraints. 9420-19 9420.4.6 Environmental Effects 9420-20 9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5 Dijective 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-20 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 942	9420.4.4.		
9420.4.5 Trenching/Recovery Wells 9420-20 9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-20 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-21 9420.4.7.4 When to Use 9420-22	9420.4.4.		
9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-20 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-21 9420.4.7.4 When to Use 9420-22	9420.4.4.	6 Environmental Effects	9420-20
9420.4.5.1 Objective 9420-20 9420.4.5.2 Description 9420-20 9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-21 9420.4.7.4 When to Use 9420-21	9420.4.5	Trenching/Recovery Wells	9420-20
9420.4.5.3 Applicable Shoreline Types 9420-20 9420.4.5.4 When to Use 9420-20 9420.4.5.5 Biological Constraints 9420-20 9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-22 9420.4.7.4 When to Use 9420-22 9420.4.7.5 Biological Constraints 9420-22			
9420.4.5.4 When to Use	9420.4.5.	2 Description	9420-20
9420.4.5.4 When to Use	9420.4.5.	3 Applicable Shoreline Types	9420-20
9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.4 When to Use 9420-21 9420.4.7.5 Biological Constraints 9420-22 9420.4.7.5 Biological Constraints 9420-22	9420.4.5.		
9420.4.5.6 Environmental Effects 9420-20 9420.4.6 Oiled Sediment Removal 9420-20 9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.4 When to Use 9420-21 9420.4.7.5 Biological Constraints 9420-22 9420.4.7.5 Biological Constraints 9420-22	9420.4.5.	5 Biological Constraints	9420-20
9420.4.6.1 Objective 9420-20 9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-21 9420.4.7.4 When to Use 9420-21 9420.4.7.5 Biological Constraints 9420-21	9420.4.5.		
9420.4.6.2 Description 9420-21 9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-21 9420.4.7.4 When to Use 9420-22 9420.4.7.5 Biological Constraints 9420-22	9420.4.6	Oiled Sediment Removal	9420-20
9420.4.6.3 Applicable Shoreline Types 9420-21 9420.4.6.4 When to Use 9420-21 9420.4.6.5 Biological Constraints 9420-21 9420.4.6.6 Environmental Effects 9420-21 9420.4.7 Ambient-Water Flooding (Deluge) 9420-21 9420.4.7.1 Objective 9420-21 9420.4.7.2 Description 9420-21 9420.4.7.3 Applicable Shoreline Types 9420-22 9420.4.7.4 When to Use 9420-22 9420.4.7.5 Biological Constraints 9420-22	9420.4.6.	1 Objective	9420-20
9420.4.6.4 When to Use	9420.4.6.	2 Description	9420-21
9420.4.6.5 Biological Constraints	9420.4.6.	3 Applicable Shoreline Types	9420-21
9420.4.6.6Environmental Effects9420-219420.4.7Ambient-Water Flooding (Deluge)9420-219420.4.7.1Objective9420-219420.4.7.2Description9420-219420.4.7.3Applicable Shoreline Types9420-229420.4.7.4When to Use9420-229420.4.7.5Biological Constraints9420-22	9420.4.6.		
9420.4.7 Ambient-Water Flooding (Deluge)	9420.4.6.	5 Biological Constraints	9420-21
9420.4.7.1Objective9420-219420.4.7.2Description9420-219420.4.7.3Applicable Shoreline Types9420-229420.4.7.4When to Use9420-229420.4.7.5Biological Constraints9420-22	9420.4.6.	6 Environmental Effects	9420-21
9420.4.7.2Description9420-219420.4.7.3Applicable Shoreline Types9420-229420.4.7.4When to Use9420-229420.4.7.5Biological Constraints9420-22	9420.4.7	Ambient-Water Flooding (Deluge)	9420-21
9420.4.7.3 Applicable Shoreline Types 9420-22 9420.4.7.4 When to Use 9420-22 9420.4.7.5 Biological Constraints 9420-22	9420.4.7.	1 Objective	9420-21
9420.4.7.4When to Use	9420.4.7.	2 Description	9420-21
9420.4.7.5 Biological Constraints	9420.4.7.	3 Applicable Shoreline Types	9420-22
	9420.4.7.	4 When to Use	9420-22
9420.4.7.6 Environmental Effects 9420-22	9420.4.7.	5 Biological Constraints	9420-22
	9420.4.7.	-	
9420.4.8 Ambient-Water/Low Pressure Washington (<50 psi)	9420.4.8	Ambient-Water/Low Pressure Washington (<50 psi)	9420-22
		• • • •	
9420.4.8.1 Objective	9420.4.8.	2 Description	9420-22
9420 4 8 1 Objective 9420-22		5	
	7720.7.0.		

0400 4 0 0		0.400.00
9420.4.8.3	Applicable Shoreline Types	
9420.4.8.4	When to Use	
9420.4.8.5	Biological Constraints	
9420.4.8.6	Environmental Effects	
	ient-Water/High Pressure Washing (>100 psi)	
9420.4.9.1	Objective	
9420.4.9.2	Description	
9420.4.9.3	Applicable Shoreline Types	
9420.4.9.4	When to Use	
9420.4.9.5	Biological Constraints	
9420.4.9.6	Environmental Effects	
	m-Water <90°F/Moderate Pressure Washing 50 t	io 100
psi 9420		0.400, 0.4
9420.4.10.1	Objective	
9420.4.10.2	Description	
9420.4.10.3	Applicable Shoreline Types	
9420.4.10.4	When to Use	
9420.4.10.5	Biological Constraints	
9420.4.10.6	Environmental Effects	
	Water >90° F/Moderate Pressure Washington 50	to 100
psi 9420		
9420.4.11.1	Objective	
9420.4.11.2	Description	
9420.4.11.3	Applicable Shoreline Types	
9420.4.11.4	When to Use	
9420.4.11.5	Biological Constraints	
9420.4.11.6	Environmental Effects	
	um Removal of Oil	
9420.4.12.1	Objective	
9420.4.12.2	Description	
9420.4.12.3	Applicable Shoreline Types	
9420.4.12.4	When to Use	
9420.4.12.5	Biological Constraints	
9420.4.12.6	Environmental Effects	
9420.4.13 Sedin	ment Reworking	
9420.4.13.1	Objective	
9420.4.13.2	Description	
9420.4.13.3	Applicable Shoreline Types	
9420.4.13.4	When to Use	
9420.4.13.5	Biological Constraints	
9420.4.13.6	Environmental Effects	
9420.4.14 Sedin	ment Removal, Cleansing, and Replacement	
9420.4.14.1	Objective	
9420.4.14.2	Description	
9420.4.14.3	Applicable Shoreline Types	
9420.4.14.4	When to Use	

9420.4.14	4.5	Biological Constraints	9420-28
9420.4.14	4.6	Environmental Effects	9420-28
9420.4.15	Cutting	Vegetation	9420-28
9420.4.15		Objective	
9420.4.15	5.2	Description	9420-28
9420.4.15	5.3	Applicable Shoreline Types	9420-28
9420.4.15		When to Use	
9420.4.15	5.5	Biological Constraints	9420-29
9420.4.15	5.6	Environmental Effects	9420-29
9420.5 Shoreline	Counte	ermeasure Methods Using Alternative Technology .	9420-29
9420.5.1	In-Situ	Burning on Shorelines	9420-29
9420.5.1.	1	Objective	9420-29
9420.5.1.	2	Description	9420-29
9420.5.1.	3	Applicable Shoreline Types	9420-30
9420.5.1.	4	When to Use	9420-30
9420.5.1.	5	Biological Constraints	9420-30
9420.5.1.	6	Environmental Effects	9420-30
9420.5.2	Chemic	al Oil Stabilization with Elastomizers	9420-30
9420.5.2.	1	Objective	9420-30
9420.5.2.	2	Description	9420-30
9420.5.2.	3	Applicable Shoreline Types	9420-30
9420.5.2.	4	When to Use	9420-31
9420.5.2.	5	Biological Constraints	9420-31
9420.5.2.	6	Environmental Effects	9420-31
9420.5.3	Chemic	al Protection of Beaches	9420-31
9420.5.3.	1	Objective	9420-31
9420.5.3.		Description	
9420.5.3.		Applicable Shoreline Types	
9420.5.3.		When to Use	
9420.5.3.	5	Biological Constraints	9420-31
9420.5.3.	6	Environmental Effects	9420-32
9420.5.4	Chemic	al Cleaning of Beaches	9420-32
9420.5.4.	1	Objective	9420-32
9420.5.4.		Description	
9420.5.4.	3	Applicable Shoreline Types	9420-32
9420.5.4.		When to Use	
9420.5.4.		Biological Constraints	
9420.5.4.	6	Environmental Effects	9420-32
9420.5.5	Nutrien	t Enhancement	9420-33
9420.5.5.		Objective	
9420.5.5.		Description	
9420.5.5.		Applicable Shoreline Types	
9420.5.5.		When to Use	
9420.5.5.		Biological Constraints	
9420.5.5.		Environmental Effects	
9420.5.6	Microb	ial Addition	9420-34

	9420.5.6.1	Objective	9420-34
	9420.5.6.2	Description	9420-34
	9420.5.6.3	Applicable Shoreline Types	9420-34
	9420.5.6.4	When to Use	
	9420.5.6.5	Biological Constraints	9420-34
	9420.5.6.6	Environmental Effects	9420-34
9420.6	Matrices of Rec	ommended Countermeasure Methods by Oil and	
She	oreline Type	- -	9420-34
9420 A	Attachment	A: Guidelines for Treatment Operations	. 9420 A-1
9420 B	Attachment	B: Best Management Practices	9420 B-1
9420 C	Attachment	C: Glossary	9420 C-1
9420 D	Attachment	D: Additional References	. 9420 D-1

Northwest Area Shoreline Countermeasures Manual and Matrices

9420.1 Introduction

Shoreline countermeasures following an oil spill are a critical element in determining the ultimate environmental impact and cost resulting from a spill. As with most aspects of spill response, careful planning can significantly increase the effectiveness of treatment operations. Local response organizations need to develop mechanisms for identifying shorelines requiring treatment, establishing treatment priorities, monitoring the effectiveness and impacts of treatment, and identifying and resolving problems as the treatment progresses.

The National Oceanic and Atmospheric Administration (NOAA) developed this manual as a tool for shoreline countermeasure planning and response by Regional Response Teams, Area Planning Committees, and state response agencies. The manual is presented as a template that can be tailored for each region or area.

Each section of the manual should be adapted to the specific environments, priorities, and treatment methods appropriate to the planning area. These elements provide the information needed to select cleanup methods for specific combinations of shoreline and oil types. Adapting and completing the template creates a better manual that meets the specific needs of the area. At a minimum, the shoreline environments and special resources need to be revised to reflect those found in the area of concern. Local information on shoreline types (discussed in Section 9420.3) can be obtained from Environmental Sensitivity Index (ESI) atlases prepared by NOAA for most of the United States shorelines, including the Great Lakes. These atlases describe the shoreline types in each area; the descriptions can be used to replace those included in this template, if appropriate. The section on Special Considerations, Section 9420.3.1.15, only lists resource issues that are potentially of concern. Each region or area should identify its issues of greatest concern and provide guidance on how to best minimize impacts from oil spills. More importantly, the pre-spill process of adapting this manual should allow response agencies the opportunity to discuss and resolve shoreline treatment issues prior to a spill emergency. This tool also outlines a process of documenting and recommending cleanup options for a section of a shoreline after it has been oiled.

9420.2 Shoreline Evaluation and Mapping

STILL TO BE DEVELOPED

9420.2.1 Objectives

- 1. Assess the need for shoreline cleanup.
- 2. Select the most appropriate cleanup method.
- 3. Determine priorities for shoreline cleanup.
- 4. Document the spatial oil distribution over time.
- 5. Internally consistent historical record of shoreline oil distribution.

9420.2.2 Shoreline Evaluation Process

9420.2.3 Guidelines for Shoreline Surveys

- 1. Joint participation in ground surveys such that all entities from Unified Command are represented.
- 2. Selecting and naming segments.
- 3. Shoreline Survey Evaluation Forms with accepted common shoreline oiling terminology.

9420.3 Shoreline Types and Sensitive Resources

The type of shoreline, degree of exposure to waves and currents, and associated biological sensitivity are the main criteria for selecting appropriate treatment techniques. Prediction of the behavior and persistence of oil on intertidal habitats is based on an understanding of the coastal environment, not just the substrate type and grain size. The vulnerability of a particular intertidal habitat is an integration of the:

- 1. Shoreline type (substrate, grain size, tidal elevation, origin);
- 2. Exposure to wave and tidal energy;
- 3. Biological productivity and sensitivity; and
- 4. Ease of cleanup.

All of these factors are used to determine the relative sensitivity of shorelines. Key to the sensitivity ranking is an understanding of the relationships between: physical processes, substrate, shoreline type, product type, sediment transport, and product fate and effect. Thus, the intensity of energy expended upon a shoreline by wave action, tidal currents, and river currents directly affects the persistence of stranded oil. The need for shoreline cleanup activities is determined, in part, by the lack or slowness of natural processes in removal of oil stranded on the shoreline.

These concepts were used to develop the ESI, which ranks shoreline environments according to their relative sensitivity to oil spills, potential biological injury, and ease of cleanup. ESI maps have been prepared for most areas of the coastline of the United States. Generally speaking, areas exposed to high levels of physical energy, such as wave action and tidal currents, and low biological activity, rank low on the scale, while sheltered areas with associated high biological activity have the highest ranking. The shoreline types used in this

manual are the rankings, on a scale of 1 to 10, used on most ESI maps (NOAA 1992). Each atlas has a legend that defines the shoreline ranking scale, describes the nature and distribution of each shoreline type in the area, predicts the behavior of oil on that shoreline type, and makes general cleanup recommendations.

The descriptions, predicted oil impact, and recommended response activity listed in the following sections were updated from existing ESI Atlases for the following areas: the Strait of Juan de Fuca and Northern Puget Sound (NOAA 1984), Central and Southern Puget Sound (NOAA 1985), Oregon and Washington (NOAA 1986), and Columbia River (NOAA 1991). It should be noted that the description of riverine shoreline in the Columbia River ESI Atlas uses different names and includes only six types. Based on the predicted oil impact and response considerations, these six Columbia River shoreline types correspond to the coastal shoreline types in the following way:

Columbia River Shoreline Types	Coastal Shoreline Types
 CR ESI Unvegetated steep banks and cliffs 	 ESI-3 Fine and medium grain sand beach, eroding scarp and unvegetated steep river bank
CR ESI Sand/gravel beaches	 ESI-5 Mixed sand and gravel beaches
CR ESI Rip rap	 ESI-6C Exposed rip rap
CR ESI Flats	 ESI-7 Exposed tidal flat
CR ESI Vegetated banks	 ESI-9B Sheltered vegetated low bank
CR ESI Marsh/swamp	 ESI-10 Marshes

9420.3.1 Shoreline Types

9420.3.1.1 ESI 1 – Exposed Rocky Cliff Face & Vertical Sea Walls or Piers

9420.3.1.1.1 Description

- Exposed rocky shores are most common along the Washington and Oregon outer coasts, but also are present along the outer Strait of Juan de Fuca and the San Juan Islands.
- This shoreline type is composed of steeply dipping to vertical bedrock; intertidal zone is steep (<30° slope), with very little width.
- This shoreline type is exposed to high waves, and sediment accumulations are uncommon and ephemeral, since waves remove debris that has slumped from eroding cliffs.
- This shoreline type is frequently found interspersed with other shoreline types.
- Rock surfaces are colonized by barnacles, mussels, snails, and algae; many of the cliffs are used by marine birds and mammals.
- Manmade seawalls and piers are common along inlets, urbanized areas, and developed beachfront sites. These are composed of concrete and stone, wooden, or metal bulkheads and wooden pilings.

 Organisms such as barnacles, shellfish, and algae may be common on pilings; biota on concrete structures along the upper intertidal or supratidal zones is sparse.

9420.3.1.1.2 Predicted Oil Impact

- Oil is typically held offshore by waves reflecting off the steep cliff; on less steep shores, oil may come onshore.
- Oil persistence will be short and will be a function of the wave energy during the spill; during high wave energy, oil will be removed in days.
- Marine birds (especially diving birds) and mammals using these rocky shores maybe affected.
- Impacts to intertidal communities are expected to be of short duration; an exception would be where heavy concentrations of a light refined product (e.g., No. 2 fuel oil) came ashore very quickly.
- Oil would percolate between the joints of manmade structures and coat the narrow intertidal area of solid structures.
- Biota would be damaged or killed under heavy accumulations.

9420.3.1.1.3 Response Considerations

- On most shores, no cleanup is necessary.
- Access is usually very difficult and may pose significant safety issues to response personnel.
- Monitoring for impacts to marine birds and mammals is advised.
- Cleanup of recreational areas may be necessary; high-pressure water flushing is effective while oil is still fresh.

9420.3.1.2 ESI 2 – Exposed Wave-Cut Platforms 9420.3.1.2.1 Description

- The intertidal zone consists of a flat rock bench of highly variable width; along the Oregon and Washington coasts, the platform surface is irregular and tidal pools are common.
- The shoreline may be backed by a steep scarp or low bluff. In Puget Sound, these areas are usually made up of low-lying bedrock or glacial till.
- There may be a narrow, perched beach of gravel- to boulder-sized sediments at the base of the scarp; pockets of sandy "tidal flats" can occur on the platform in less exposed settings.
- Small accumulations of gravel can be found in the tidal pools and crevices in the platform.
- These habitats can support large populations of encrusting animals and plants, with rich tidal pool communities.

9420.3.1.2.2 Predicted Oil Impact

- Oil will not adhere to the rock platform, but rather will be transported across the platform and accumulate along the high-tide line.
- Oil can penetrate and persist in the beach sediments, if present.
- Tide pool organisms may be killed

• Persistence of oiled sediments is usually short term (on the order of days to weeks), except in wave shadows or larger sediment accumulations.

9420.3.1.2.3 Response Considerations

- In most wave-exposed areas, cleanup is not necessary.
- High recreational-use areas may be effectively cleaned using highpressure water flushing if oil is still fresh.
- Removal of organisms should be avoided.
- Monitoring for impacts to marine birds and mammals is advised.

9420.3.1.3 ESI 3 – Fine to Medium Grained Sand Beaches and Unvegetated Steep River Banks

9420.3.1.3.1 Description

- Sand beaches are common along the outer coast, but not very common in the Puget Sound Region.
- These beaches are generally wide, hard-packed, and flat if fine grained; gently sloping (slope <5°) if medium grained.
- They are commonly backed by dunes or seawalls along the exposed, outer coast.
- Along sheltered bays, they are narrower, often fronted by tidal flats.
- Upper beach fauna are scarce; lower intertidal biota may include clams, worms, and amphipods.
- Near vertical scarps in unconsolidated sediments (most often sand and gravel) and bedrock; most common in urban areas and below dams.
- Undergoing active erosion, as indicated by lack of vegetation

9420.3.1.3.2 Predicted Oil Impact

- Light oil accumulations will be deposited as oily swashes or bands along the upper intertidal zone.
- Heavy oil accumulations will cover the entire beach surface, although the oil will be lifted off the lower beach with the rising tide.
- Maximum penetration of oil into fine grained sand will be 10 centimeters (cm).
- Burial of oiled layers by clean sand within the first few weeks will be less than 30 cm along the upper beach face.
- Oil will form a band on steep river banks. In unconsolidated sediments, the substrate will be removed, taking the oil with it.
- Organisms living in the beach sands may be killed either by smothering or by lethal oil concentrations in the interstitial water.
- Shorebirds may be killed if oiled, though they may shift to clean sites.

9420.3.1.3.3 Response Considerations

- Cleanup is not generally recommended on unconsolidated sediments of steep river banks unless in high recreational use areas.
- Cleanup should concentrate on removal of oil from the upper swash zone after all oil has come ashore.

- Sand removal should be minimal to avoid erosion problems; use of heavy equipment for oil/sand removal may result in the removal of excessive amounts of sand; manual cleanup may be more efficient.
- Activity through the oiled sand should be limited to prevent grinding oil deeper in the beach.
- Activity through dune areas should be severely limited.

9420.3.1.4 ESI 4 – Coarse Grained Sand Beaches 9420.3.1.4.1 Description

- ESI 4 is commonly found near headlands and along the southern Oregon coast.
- These beaches are moderate-to-steep, of variable width, and have soft sediments.
- They may be present as pocket beaches or on top of bedrock platforms.
- Coastal beaches are typically inhabited by razor clams, burrowing worms, and mysids.

9420.3.1.4.2 Predicted Oil Impact

- Light oil will be deposited primarily as a band along the high-tide line.
- Under very heavy accumulations, oil may spread across the entire beach face, though the oil will be lifted off the lower beach with the rising tide.
- Penetration of oil into coarse grained sand can reach 25 cm.
- Burial of oiled layers by clean sand can be rapid, and up to 60 cm or more.
- Burial over 1 meter is possible if the oil comes ashore at the start of a depositional period.
- Biological impacts include temporary declines in infaunal populations, which can also affect feeding shorebirds.

9420.3.1.4.3 Response Considerations

- Cleanup should commence after the majority of the oil has come onshore unless significant burial is expected to occur.
- Cleanup should concentrate on oil removal from the upper swash zone.
- Sand removal should be minimal to avoid erosion problems; use of heavy equipment for oil/sand removal may result in the removal of excessive amounts of sand; manual cleanup may be more efficient.
- Activity through the oiled sand should be limited to prevent grinding oil deeper in the beach.
- Activity through dune areas should be severely limited.

9420.3.1.5 ESI 5 – Mixed Sand and Gravel Beaches 9420.3.1.5.1 Description

• This shoreline type is the most common beach type in Puget Sound; found along the coast as extensive beaches along rocky shores, perched beaches on bedrock, and in the vicinity of river mouths along the southern Oregon coastline

- This shoreline type is a narrow, moderately sloping beach composed of a mixture of sand (greater than 20 percent) and gravel (greater than 25 percent).
- The high-tide berm area is usually composed of sand or fine gravel (pebbles to cobbles), whereas the lower part of the beach is coarser, with cobbles to boulders.
- Because of the mixed sediment sizes, there may be zones of sand, pebbles, or cobbles.
- Because of sediment mobility and desiccation on exposed beaches, there are low densities of attached animals and plants.
- Upper intertidal zone used extensively by surf smelt and sand lance for spawning.
- The presence of attached algae, mussels, and barnacles indicates beaches that are relatively sheltered, with the more stable substrate supporting a richer biota.

9420.3.1.5.2 Predicted Oil Impact

- During small spills, oil will be deposited along and above the high-tide swash.
- Large spills will spread across the entire intertidal area.
- Oil penetration into the beach sediments may be up to 50 cm; however, the sand fraction can be quite mobile, and oil behavior is much the same as on a sand beach if the sand fraction exceeds about 40 percent.
- Burial of oil may be deep at and above the high-tide line, where oil tends to persist, particularly where beaches are only intermittently exposed to waves.
- On sheltered beaches, extensive pavements of asphalted sediments can form if there is no removal of heavy oil accumulations because most of the oil remains on the surface; once formed, pavements are very stable and can persist for many years.
- Oil can be stranded in the coarse sediments on the lower part of the beach, particularly if the oil is weathered or emulsified.
- Biota present may be killed by the oil, either by smothering or by lethal concentrations in the water column.

9420.3.1.5.3 Response Considerations

- Cleanup should commence only after the majority of oil has come ashore.
- Heavy accumulations of oil and oil-soaked debris at the high-tide swash line should be removed to prevent asphalt formation.
- Exposed beaches do not require cleanup unless heavily oiled.
- Removal of sediments should be minimal to prevent erosion.
- Mechanical reworking of sediment into the surf zone can effectively remove fresh oil, especially in sheltered areas of low biological activity; sorbents and booms should be used to contain released oil.

9420.3.1.6 ESI 6A – Gravel Beaches – Pebbles to Cobbles 9420.3.1.6.1 Description

- This shoreline type is present along coast of Washington.
- Fine grained gravel beaches composed of sediments ranging in size from pebbles to cobbles (from 4 to 256 cm in diameter), with boulders a very minor fraction. No sand is on the surface, and less than 20 percent is in subsurface.
- Zones of pure pebbles or cobbles may be present, with pebbles forming berms at high-tide line and cobbles and boulders dominating lower beach face.
- The beach slope is intermediate to steep (between 10 and 20 degrees), with multiple wave-built berms forming the upper beach.
- Natural replenishment rate of sediments is extremely slow.
- There is high annual variability in degree of exposure, and thus in frequency of mobilization by waves. Degree of exposure or sediment mobility can be predicted by the amount of rounding or smoothing of the individual pebbles and cobbles.
- Sediment mobility limits the amount of attached algae, barnacles, and mussels to lower tidal levels.

9420.3.1.6.2 Predicted Oil Impact

- Oil on gravel beaches would coat individual rocks and penetrate up to 60 cm in well-sorted gravels, which may be below the level of annual reworking by the waves.
- Deep penetration and rapid burial of stranded oil is likely on exposed beaches.
- On exposed beaches, oil can be pushed over the high-tide and storm berms, pooling and persisting above the normal zone of wave wash.
- Long-term persistence will be controlled by the depth of penetration versus the depth of routine reworking by storm waves. Oil may persist for years in low wave energy areas.
- In low energy areas, buried oil will tend to seep out, generating sheens that can recontaminate the shoreline.
- On relatively sheltered beaches, formation of asphalt pavements is likely where accumulations are heavy and oil is left uncleaned.

9420.3.1.6.3 Response Considerations

- Heavily oiled wrack and debris should be removed.
- Due to extremely slow natural replenishment, there should be no permanent removal of sediments.
- High-pressure flushing of gravel may help in cleaning exposed surfaces, but will have little effect on oil penetrated deeply into gravel without extensive reworking.
- In heavily oiled, sheltered areas, sediments may have to be removed and replaced.

9420.3.1.7 ESI 6B – Gravel Beaches – Cobbles to Boulders 9420.3.1.7.1 Description

- Gravel beaches are composed of sediments ranging in size from cobbles to boulders (larger than 256 cm in diameter).
- The beach slope is intermediate to steep (between 10 and 20 degrees), with multiple wave-built berms forming the upper beach.
- Boulders dominate the lower intertidal zone. Boulder and cobble armoring of the surface of the middle to lower intertidal zone may also be present.
- This shoreline type has the lowest natural replenishment rate of sediments of all beaches.
- There is high annual variability in degree of exposure, and thus in frequency of mobilization by waves.
- This shoreline type has a higher amount of attached algae and epifauna due to increased stability of larger boulders.

9420.3.1.7.2 Predicted Oil Impact

- Oil on gravel beaches would coat individual rocks and penetrate up to 100 cm in the poorly sorted larger cobble and boulder.
- The presence of armor may significantly extend persistence of oil; oil located beneath armored surface will remain longer because of the higher velocities required to mobilize the armor.
- On exposed beaches, oil can be pushed over the high-tide and storm berms, pooling and persisting above the normal zone of wave wash.
- Long-term persistence will be controlled by the depth of penetration versus the depth of routine reworking by storm waves. Oil may persist for years in low wave energy areas.
- In low energy areas, buried oil will tend to seep out, generating sheens that can recontaminate the shoreline.
- On relatively sheltered beaches, formation of asphalt pavements is likely where accumulations are heavy and oil is left uncleaned.

9420.3.1.7.3 Response Considerations

- Heavily oiled wrack and debris should be removed.
- Due to extremely slow natural replenishment, there should be no permanent removal of sediments.
- High-pressure flushing of gravel may help in cleaning exposed surfaces, but will have little effect on oil penetrated deeply into gravel without extensive reworking.
- In heavily oiled, sheltered areas, sediments may have to be removed and replaced.

9420.3.1.8 ESI 6C – Rip Rap

9420.3.1.8.1 Description

• Rip rap is angular rock similar in size to that described for ESI 6B, used for shoreline protection and inlet stabilization.

- Rip rap structures have a slope that is generally steep, are located at the high tide line where the heaviest concentration of oil usually impact and are made up of boulders too large to be reworked by waves.
- Due to the stability of rip rap, biota on the lower levels may be plentiful and varied.
- ESI 6C has no natural replenishment of sediments
- ESI 6C is generally located in areas exposed to higher wave energy.
- A higher amount of attached algae and epifauna may be present due to increased stability of larger boulders.

9420.3.1.8.2 Predicted Oil Impact

- With heavy oiling, individual boulders will be heavily coated, and penetration to the bottom of the rip rap structure is likely.
- Pools of oil will collect inside the rip rap structure and potentially be a source of sheens for a long period.
- Biota will be damaged or killed under heavy accumulations.

9420.3.1.8.3 Response Considerations

- Heavily oiled wrack and debris should be removed.
- High-pressure flushing of rip rap may help in cleaning exposed surfaces, but will have little effect on oil penetrated deeply into gravel without extensive reworking.
- Heavily oiled rip rap may need to be removed and replaced.

9420.3.1.9 ESI 7 – Exposed Tidal Flats 9420.3.1.9.1 Description

- This shoreline type is particularly common in the eastern portion of Puget Sound and at the entrance to bays, estuaries, and river mouths along the coast.
 - This shoreline type is composed primarily of sand and mud.
 - The presence of sand indicates that tidal or wind-driven currents and waves are strong enough to mobilize the sediments.
 - This shoreline type is always associated with another shoreline type on the landward side of the flat.
 - The sediments are water-saturated, with only the topographically higher ridges drying out during low tide.
 - Biological utilization can be very high, with large numbers of infauna and heavy use by birds for roosting and foraging. Clams and worms are the most common species.

9420.3.1.9.2 Predicted Oil Impact

- Oil does not usually adhere to the surface of exposed tidal flats or penetrate the water saturated sediments, but rather moves across the flat and accumulates at the high-tide line.
- Deposition of oil on the flat may occur on a falling tide if concentrations are heavy but will frequently be refloated by the next high tide.

 Biological impacts may be severe, especially to burrowing bivalves and worms since oil can penetrate into burrows; this can significantly decrease food for foraging birds and fish in the area.

9420.3.1.9.3 Response Considerations

- Cleanup of tidal flats is generally not recommended due to the likelihood of mixing oil deeper into the sediments during the cleanup effort.
- Access is usually very poor due to shallow water and soft sediments.
- Passive removal of oil lifted off tidal flat by high tide may be advisable if this can be accomplished without mixing oil into the sediments.
- Use of heavy machinery should be restricted to prevent mixing oil into the sediments and cannot be used in soft, muddier areas.
- Removal of heavily oiled debris stranded in a tidal flat may be advisable if this can be accomplished without mixing surface oil into the sediments.

9420.3.1.10 ESI 8A – Sheltered Vertical Rocky Shores & Solid, Vertical, Man-Made Structures

9420.3.1.10.1 Description

- This shoreline type is located in calm, interior environments, especially common within the interior portion of the San Juan Islands.
- This shoreline type consists of a bedrock shore of variable slope (from vertical cliffs to wide, rocky ledges) that is sheltered from exposure to most wave and tidal energy.
- This shoreline type is uncommon along the coast; may occur along the inside of bays and coves.
- Species density and diversity vary greatly, but barnacles, snails, mussels, clams, periwinkles, amphipods, polychaetes, rockweed, and crabs are often very abundant.
- Sheltered solid, vertical, man-made structures consisting of short segments of seawalls, docks, and bulkheads are commonly found along the high tide line in harbors, industrial sites and other developed areas.
- Biota on man-made structures along the upper intertidal or supratidal zones is sparse.

9420.3.1.10.2 Predicted Oil Impact

- On rocky shores, oil will adhere readily to the higher rock surfaces, particularly along the high-tide line, forming a distinct oil band.
- The lower intertidal zone usually stays wet (particularly when algaecovered), preventing oil from adhering to the rock surface.
- Oil will not penetrate, except in fractures in the rock where oil can pool and persist.
- Oil will penetrate into joints and voids of man-made structure, and with heavy concentrations will coat the intertidal areas.
- Because of the low energy setting, even light accumulations can persist for years, especially between rocks.
- Fresh oil and light refined products have high acute toxicity that can affect attached organisms after even short exposures.

9420.3.1.10.3 Response Considerations

- Cleanup is difficult, oiled shoreline may pose long-term leaching problem.
- High- and low-pressure water flushing of man-made structures and rocky shores is effective while oil is still fresh.
- Cutting of oiled algae is generally not recommended.

9420.3.1.11 ESI 8B – Sheltered Rubble Slope 9420.3.1.11.1 Description

- This shoreline type is commonly found in industrial waterways of northwest ports.
- This shoreline type is a relatively steep (greater than 15 degrees) and short rocky shore that is covered with a thin-to-thick veneer of angular rubble without any evidence of rounding or sorting by sediment transport.
- This shoreline type is sheltered from wave energy or strong tidal currents.
- The surface rubble is highly variable in packing, but there is always some permeability in the surface material.
- Species density and diversity vary greatly, but barnacles, snails, mussels, clams, periwinkles, amphipods, polychaetes, rockweed, and crabs are often very abundant.

9420.3.1.11.2 Predicted Oil Impact

- Oil will adhere readily to the rough rocky surface, particularly along the high-tide line, forming a distinct oil band.
- Where the rubble is loosely packed, oil will penetrate deeply, causing long-term contamination of the subsurface sediments.
- Fresh oil and light refined products have high acute toxicity that can affect attached organisms after even short exposures.

9420.3.1.11.3 Response Considerations

- Cleanup is difficult, and oiled shoreline may pose a long-term leaching problem, especially from subsurface contamination.
- High- and low-pressure water flushing is effective for surface contamination while oil is still fresh, but generally does nothing for subsurface contamination.
- Heavily contaminated subsurface sediment may need to be removed and replaced to prevent long-term leaching and sheening.
- Cutting of oiled algae is generally not recommended.

9420.3.1.12 ESI 9A – Sheltered Tidal Flats of Sand and Mud 9420.3.1.12.1 Description

- This shoreline type is very common in bays and estuaries in Grays Harbor, Willapa Bay, Tillamook Bay, Columbia River estuary, and upper Puget Sound.
- They are present in calm-water habitats, sheltered from major wave activity, and frequently fronted by marshes.

- Although wave energy is very low, flats may be exposed to moderate tidal or river currents.
- Substrate slope is flat (less than 3 degrees) and can vary in width from a few meters to nearly 1 kilometer.
- Sediment is composed of water-saturated mud or muddy sand, so permeability is very low, except where burrowed.
- The sediments are very soft and cannot support even light foot traffic.
- There are usually large populations of clams, crabs, oysters worms, amphipods, and snails; many of these flats are commercially harvested.
- This shoreline type may be used heavily by birds for feeding and as staging areas during migration.
- Eelgrass beds may be present and are an important nursery area for juvenile salmonids, Dungeness crab, and various marine fish species.

9420.3.1.12.2 Predicted Oil Impact

- Oil does not usually adhere to the surface of sheltered tidal flats, but rather moves across the flat and accumulates at the high-tide line.
- Deposition of oil on the flat may occur during a falling tide if concentrations are heavy, but may refloat with the next high tide.
- Oil will not penetrate the water-saturated sediments; however, persistent contamination can occur if oil penetrates into burrows of organisms in the mud.
- In areas of high suspended sediments, sorption of oil can result in contaminated sediments that can be deposited on the flats and persist for years.
- Biological impacts may be severe.

9420.3.1.12.3 Response Considerations

- These areas require high priority for protection during oil spills.
- Cleanup of sheltered tidal flats is generally not recommended due to the likelihood of mixing oil deeper into the sediments during cleanup effort.
- Access is very limited due to shallow water and soft substrate; restrict any active cleanup to the upper reaches of high-tide swash or conduct from boats.
- Removal of heavily oiled debris stranded along the high tide line may be advisable if activity can be accomplished without mixing surface oil into the sediments.

9420.3.1.13 ESI 9B – Sheltered Vegetated Low Bank 9420.3.1.13.1 Description

- Either low bank with grasses or low eroding banks with trees and tree roots exposed to the water.
- ESI 9B is found at river mouths in the Puget Sound area, very common throughout the lower Columbia River and above the dams.
- This shore type is flooded occasionally by high water.

9420.3.1.13.2 Predicted Oil Impact

- At low water, there is little impact, with oil coating a narrow band of sediment at the water level.
- At high water, the oil will cover and coat grasses at the base of the trees and may also coat low hanging branches and foliage.
- Oil may cause loss of the grasses, but the trees should survive unless oil penetrates and persists in the substrate.

9420.3.1.13.3 Response Considerations

- Low pressure flushing of oiled areas is effective in removing moderate to heavy accumulations of oil from along the banks.
- Sorbent and containment boom should be placed on the water side of the cleanup operations to contain and collect oil outflow.
- Low- to moderate-pressure flushing can be used to remove oil from tree roots and trunks.

9420.3.1.14 ESI 10 – Salt & Fresh-Water Marshes (Herbaceous & Woody Vegetation)

9420.3.1.14.1 Description

- This shoreline type is common along the Washington and Oregon coast and in Puget Sound at the head of many bays; extensive marches are found in the Skagit River and Nisqually River delta areas, as well as the Columbia River estuary and river below Portland.
- Marshes are low energy, protected wetlands containing emergent, herbaceous, and/or woody vegetation, generally associated with river systems, bays, and estuaries.
- The width of marshes can vary widely, from a narrow fringe to extensive; substrate is generally silt and mud, with variable amounts of organic matter.
- The moderate tidal range of coastal and estuarine marshes results in the presence of numerous tidal channels; frequently, they are fronted by tidal flats.
- Resident flora and fauna are abundant and consist of numerous species.
- Marshes provide a nursery ground for numerous fish species and are heavily used by birds for nesting and feeding.

9420.3.1.14.2 Predicted Oil Impact

- Oil adheres readily to marsh vegetation.
- The band of coating will vary widely, depending upon the tidal stage at the time oil slicks are in the vegetation. There may be multiple bands.
- Large slicks will persist through multiple tidal cycles and coat the entire stem from the high-tide line to the base.
- If the vegetation is thick, heavy oil coating will be restricted to the outer fringe, with penetration and lighter oiling to the limit of tidal influence.
- Medium to heavy oils do not readily adhere or penetrate the fine sediments, but they can pool on the surface and in burrows.

• Light oils can penetrate the top few centimeters of sediment and deeply into burrows and cracks (up to 1 meter); once incorporated into the sediment, oil can persist for years.

9420.3.1.14.3 Response Considerations

- Marshes are very sensitive environments and highly vulnerable to mechanical damage from cleanup activities; they should receive the highest priority for shoreline protection.
- Cleanup is generally not recommended for light oiling or oiling confined to the outer fringe; natural flushing, especially in higher energy areas, is the best strategy.
- Activities in marshes should be kept at minimum to prevent damage to marsh plants and mixing oil into the soft sediments.
- With heavy oiling, a combination of manually removing oiled wrack and debris, low-pressure flushing, passive absorption, and vacuum collection using small boats can be effective; due to the potential for stirring up the sediment and mixing it with the oil, these activities are generally limited to the edge of the marsh.

9420.3.1.15 Special Considerations

The above shoreline types may also have associated sensitive biological resources and human-use areas, which include:

Subtidal Habitats

- Submerged aquatic vegetation,
- Kelp beds, and
- Worm beds.

Birds

- Rookeries and nesting sites,
- Waterfowl overwintering concentration areas,
- High concentration migration stopovers, and
- High concentration resident bird colonies.

Marine Mammals

- Migration corridors, and
- Population concentration areas.

Terrestrial Mammals

• Concentration areas.

Terrestrial Plants

• Threatened and endangered plants adjacent to the shoreline.

Fish and Shellfish

- Anadromous fish spawning streams,
- Sites important to beach- and kelp-spawning fish,
- Estuarine areas that are important fish nursery areas,
- Special concentration areas for estuarine and demersal fish,
- Shellfish seed beds, leased beds, high concentration areas, and
- Crab and shrimp nursery areas.

Recreation

- High-use recreational beaches,
- Marinas and boat ramps, and
- High-use boating, fishing, and diving areas.

Management Areas

- Nature preserves and reserves,
- Privately developed lands/facilities (Nature Conservancy Areas),
- Research natural areas,
- State marine parks/federal marine sanctuaries, and
- Wildlife management areas and refuges.

Resource Extraction

- Commercial fishing areas, including finfish, crabs, and mollusks;
- Water intakes;
- Aquaculture sites;
- Intertidal and subtidal mining leases;
- Subsistence harvest sites; and
- Log storage sites.

Cultural Resources

- Archaeological and other historically significant sites, and
- Native American reservations.

9420.4 Shoreline Countermeasure Methods Using Conventional Response Technology

The following section lists and describes those shoreline countermeasure methods that utilize conventional response technology to mitigate the environmental impact and enhance the recovery of a shoreline or habitat resulting from stranded oil. Methods and equipment currently in use for these conventional shoreline treatment methods are described in some detail below. These methods, when used according to the guidelines in this manual, may be used on most sites as part of the On-Scene Coordinator (OSC)-directed response. It should be noted that some of these methods may require other authorizations or permits before work begins.

- 1 No Action
- 2 Manual Removal of Oil
- 3 Passive Collection of Oil (Sorbents)
- 4 Oiled Debris Removal

- 5 Trenching/Recovery Wells
- 6 Oiled Sediment Removal
- 7 Ambient-Water Flooding (Deluge)
- 8a Ambient-Water/Low-Pressure Washing <50 pounds per square inch (psi)
- 8b Ambient-Water/High-Pressure Washing <100 psi
- 9 Warm-Water <90 degrees Fahrenheit (°F)/Moderate-to-High-Pressure Washing 50–100 psi
- 10 Hot Water >90°F/Moderate-to-High-Pressure Washing 50–100 psi
- 11 Vacuum Removal of Oil
- 12 Sediment Reworking
- 13 Sediment Removal, Cleansing, and Replacement
- 14 Cutting Oiled Vegetation

9420.4.1 No Action

9420.4.1.1 Objective

No attempt is made to remove stranded oil because there is no proven effective method for cleanup, there is unacceptable risk to response workers, or an extremely sensitive environment or resource is present.

9420.4.1.2 Description

No action is taken. However, the OSC continues to monitor the incident.

9420.4.1.3 Applicable Shoreline Types

Can be used on all shoreline types.

9420.4.1.4 When to Use

No action should be taken if the shoreline is extremely remote or inaccessible, the amount and type of oil does not justify a cleanup effort, natural removal rates are very fast, or cleanup actions will do more harm than leaving the oil to be removed naturally.

9420.4.1.5 Biological Constraints

This method may be inappropriate for areas where high numbers of mobile animals (birds, marine mammals, crabs, etc.) use the intertidal zone or adjacent nearshore waters.

9420.4.1.6 Environmental Effects

Intertidal – This method has no intertidal environmental effects beyond those caused by the spilled oil.

Subtidal – This method has no subtidal environmental effects beyond those caused by the spilled oil.

9420.4.2 Manual Removal of Oil

9420.4.2.1 Objective

In this method, stranded surface oil is removed with hand tools and manual labor.

9420.4.2.2 Description

In this method, surface oil accumulations with a minimum of sediment are removed by manual means (hands, rakes, shovels, etc.) and placed in containers for removal from the shoreline. No mechanized equipment is used.

9420.4.2.3 Applicable Shoreline Types

This method can be used on most shoreline types; it is not generally recommended for soft mud substrates where mixing of oil deeper in the sediment might occur.

9420.4.2.4 When to Use

This method is generally used on shorelines where the oil can be easily removed by non-mechanical means. It is most appropriate for light to moderate oiling conditions. Activities may need to be closely monitored or may not be appropriate in archaeological and/or culturally sensitive areas.

9420.4.2.5 Biological Constraints

Foot traffic over sensitive areas (shellfish beds, alga mats, bird nesting areas, dunes, etc.) is to be restricted. There may be periods when shoreline access is restricted (e.g., bird nesting, mammal pupping).

9420.4.2.6 Environmental Effects

Intertidal – This method's intertidal environmental effects are minimal if surface disturbance by cleanup activities and work force movement is limited.

Subtidal – This method has no effects in addition to those caused by the spilled oil.

9420.4.3 Passive Collection of Oil (Sorbents)

9420.4.3.1 Objective

The objective of this method is to remove oil by adsorption onto oleophilic material placed in the intertidal zone.

9420.4.3.2 Description

In this method, sorbent material is placed on the surface of the shoreline substrate allowing it to absorb oil as it is released by tidal or wave action. Oiled sorbent material is then collected and removed from the shoreline. The amount of oil removed dependent on the capacity of the particular sorbent, energy available for lifting oil off the shoreline, and degree of oil weathering.

9420.4.3.3 Applicable Shoreline Types

This method can be used on any shoreline type.

9420.4.3.4 When to Use

This method can be used when the shoreline oil is mobile and transport of oil is expected on or off the site. The oil must be of a viscosity and thickness to be released by the substrate and absorbed by the sorbent. It is often used as a secondary treatment method after gross oil removal and along sensitive shorelines where access is restricted.

9420.4.3.5 Biological Constraints

There are no biological constraints associated with this method, although the process can be slow, thus allowing oil to remain in critical habitats during sensitive periods of time.

9420.4.3.6 Environmental Effects

Intertidal – There may be physical impact of placing the sorbent material in a sensitive area. If all absorbents are not recovered, they will become non degradable, oily debris. Passive absorbents in the mid or lower intertidal should be monitored for entrapment of small crustaceans.

Subtidal – This method has no subtidal environmental effects in addition to those caused by the spilled oil.

9420.4.4 Oiled Debris Removal

9420.4.4.1 Objective

The objective of this method is the removal of contaminated debris and logs.

9420.4.4.2 Description

This method involves manual or mechanical removal of debris from the upper beach face and the zone above high tide beyond the normal wash of waves. It can include cutting and removal of oiled logs. Care should be taken to prevent any possible erosion of beach area and oil penetration into substrate due to foot traffic.

9420.4.4.3 Applicable Shoreline Types

This method can be used on most shoreline types where safe access is allowed; it is not generally recommend on soft mud substrates where mixing of oil deeper in the sediment might occur.

9420.4.4.4 When to Use

This method can be used when driftwood and debris are heavily contaminated and there is either a potential source of chronic oil release, an aesthetic problem, or a source of contamination for other organisms on the shoreline.

9420.4.4.5 Biological Constraints

Disturbance to adjacent upland areas should be minimized. Foot traffic over sensitive intertidal areas (shellfish beds, alga mats, bird nesting areas, dunes, etc.) should be restricted. There may be periods when shoreline access is restricted (e.g., bird nesting, mammal pupping).

9420.4.4.6 Environmental Effects

Intertidal – This method can reduce the habitat's structural complexity.

Subtidal – This method has no subtidal environmental effects in addition to those caused by the spilled oil.

9420.4.5 Trenching/Recovery Wells

9420.4.5.1 Objective

The objective of this method is to remove subsurface oil from permeable substrates.

9420.4.5.2 Description

This method involves digging trenches or wells (pits) to the depth of the oil and remove oil floating on the water table by vacuum pump or skimmer. Water flooding or high-pressure spraying at ambient temperatures can be used to flush oil to the trench.

9420.4.5.3 Applicable Shoreline Types

This method can be used on beaches ranging in grain size from fine sand to gravel.

9420.4.5.4 When to Use

This method can be used when large quantities of oil penetrate deeply into permeable sediments and cannot be removed by surface flooding. The oil must be liquid enough to flow at ambient temperatures. This method may need to be closely monitored or may not be appropriate in archaeological and/or culturally sensitive areas.

9420.4.5.5 Biological Constraints

Trenches should not be dug in the lower intertidal where attached algae and organisms are abundant.

9420.4.5.6 Environmental Effects

Intertidal – On gravel beaches, there may be a period of beach instability as the sediments are redistributed after the trenches are filled in.

Subtidal – This method has no subtidal environmental effects in addition to those caused by the spilled oil.

9420.4.6 Oiled Sediment Removal 9420.4.6.1 Objective

The objective of this method is to remove surface oiled sediments (without replacement).

9420.4.6.2 Description

In this method, oiled sediments are removed by either manual use of hand tools or mechanical use of various kinds of motorized equipment. The oiled material must be transported and disposed of offsite.

9420.4.6.3 Applicable Shoreline Types

This method can be used on any shoreline with surface sediments; it is not generally recommend on soft mud substrates where mixing of oil deeper in the sediment might occur. On rocky coasts, only manual removal is feasible. Heavy equipment should only be used with special supervision to minimize sediment removal.

9420.4.6.4 When to Use

This method can be used when only very limited amounts of oiled sediments have to be removed. It should not be considered in areas of low natural replenishment or where beach erosion may result. Care should be taken to limit siltation and remove the sediments only to the depth of oil penetration, which can be difficult with heavy equipment. This method may not be appropriate in archaeological and/or culturally sensitive areas.

9420.4.6.5 Biological Constraints

Excavating equipment must not intrude upon sensitive habitats. Only the upper intertidal and supratidal areas should be considered for sediment removal to minimize disturbance of biological communities in the lower intertidal and subtidal. There may be site-specific constraints limiting placement of equipment and temporary sediment storage piles. Such operations would generally be restricted in fish-spawning areas. Adjacent sensitive areas potentially impacted by released oil sheens must be protected during operations.

9420.4.6.6 Environmental Effects

Intertidal – The equipment is heavy, and required support personnel is extensive. May be detrimental if excessive sediments are removed without replacement. All organisms resident in the beach will be affected, though the need for removal of the oil may be determined to be the best overall alternative.

Subtidal – Release of oil and fine grained oily sediments to the water during sediment removal activities and tidal flushing of the excavated beach surface.

9420.4.7 Ambient-Water Flooding (Deluge)

9420.4.7.1 Objective

The objective of this method is to wash surface oil and oil from crevices and rock interstices to water's edge for collection.

9420.4.7.2 Description

A large diameter header pipe is placed parallel to the shoreline above the oiled area. A flexible perforated header hose is used during deluge of intertidal shorelines to better conform to their profiles. Ambient seawater is pumped

through holes in the header pipes and flows down the beach face to the water. On porous beaches, water flows through the substrate, pushing loose oil ahead of it (or floats oil to the water's surface), then transports the oil down slope for pickup. Flow is maintained as long as necessary to remove the majority of free oil. Oil is trapped by booms and picked up with a skimmer or other suitable equipment.

9420.4.7.3 Applicable Shoreline Types

This method can be used on beaches with sediments coarser than sand and on gently sloping rocky shorelines. It generally is not applicable to mud, sand, vegetated, or steep rocky shorelines.

9420.4.7.4 When to Use

This method can be used on heavily oiled shorelines when the oil is still fluid and loosely adhering to the substrate, and where oil has penetrated into cobble or boulder beaches. This method is frequently used in combination with other washing techniques (low or high pressure, ambient or warm water).

9420.4.7.5 Biological Constraints

This method is not appropriate at creek mouths. Where the lower intertidal contains rich biological communities, flooding should be restricted to tidal stages when the rich zones are under water, to prevent secondary oiling.

9420.4.7.6 Environmental Effects

Intertidal – Habitat may be physically disturbed and smothered as sand and gravel components are washed down slope. Organisms may be flushed into lower tidal zones.

Subtidal – Oiled sediment may be transported to shallow subtidal areas, contaminating them and burying benthic organisms.

9420.4.8Ambient-Water/Low Pressure Washington (<50 psi)</th>9420.4.8.1Objective

The objective of this method is to mobilize liquid oil that has adhered to the substrate or man-made structures, pooled on the surface, or become trapped in vegetation to water's edge for collection.

9420.4.8.2 Description

In this method, low-pressure washing (<50 psi) with ambient seawater sprayed with hoses is used to flush oil to the water's edge for pickup. Oil is trapped by booms and picked up with skimmers or sorbents. This method can be used with a deluge system on beaches to prevent released oil from re-adhering to the substrate. Care must be taken not to drive the oil into the substrate and to prevent erosion and siltation.

9420.4.8.3 Applicable Shoreline Types

This method can be used on heavily oiled rock shores, gravel beaches, rip rap, and seawalls where the oil is still fresh and liquid, as well as in marshes and mangroves where free oil is trapped.

9420.4.8.4 When to Use

This method can be used in places where adhered oil is still fresh and must be removed due to continued release of oil. During this process, it is necessary to closely monitor for excessive siltation and erosion when flushing mixed sand and gravel beaches.

9420.4.8.5 Biological Constraints

The use of flushing may need to be restricted to certain tidal elevations so that the oil/water effluent does not drain across sensitive low tide habitats. In marshes, use only at high tide under conditions where sediments will not be disturbed and either from boats or the high-tide line to prevent foot traffic in vegetation.

9420.4.8.6 Environmental Effects

Intertidal – If containment methods are not sufficient, contamination may be flushed into the lower intertidal zone. Foot traffic, hoses, and the need for compressors will increase the physical impact to the environment.

Subtidal – Oiled sediment may be transported to shallow subtidal areas, contaminating them and burying benthic organisms.

9420.4.9Ambient-Water/High Pressure Washing (>100 psi)9420.4.9.1Objective

The objective of this method is to mobilize oil that has adhered to hard substrates or man-made structures to the water's edge for collection.

9420.4.9.2 Description

This method is similar to low-pressure washing except that it uses water pressure up to 100 psi. High-pressure spray will better remove oil that has adhered to rocks. Because the water volumes used in this method are typically low, it may require placement of sorbents directly below treatment areas or use deluge to carry oil to the water's edge for collection.

9420.4.9.3 Applicable Shoreline Types

This method may be used on rock shores, rip rap, and vertical hard manmade structures. It can be used to flush floating oil or loose oil out of tide pools and between crevices on rip rap.

9420.4.9.4 When to Use

This method may be used when low-pressure washing is not effective for removal of adhered oil, which must be removed due to continued release of oil. It may also be applied when a directed water jet can remove oil from hard-to-reach sites, or to remove oil from man-made structures for aesthetic reasons.

9420.4.9.5 Biological Constraints

Flushing may need to be restricted to certain tidal elevations so that the oil/water effluent does not drain across sensitive low-tide habitats.

9420.4.9.6 Environmental Effects

Intertidal – This method may dislodge many organisms from the substrate surface. It may drive oil deeper into the substrate if the water jet is improperly applied. Foot traffic, hoses, and the need for compressors will increase the physical impact to the environment. If containment methods are not sufficient, contamination may be flushed into the lower intertidal zone.

Subtidal – Oiled sediment and dislodged organisms may be transported to shallow subtidal areas, contaminating them and burying benthic organisms.

9420.4.10 Warm-Water <90°F/Moderate Pressure Washing 50 to 100 psi

9420.4.10.1 Objective

The objective of this method is to mobilize thick and weathered oil adhered to rock surfaces prior to flushing it to the water's edge for collection.

9420.4.10.2 Description

In this method, heated seawater (ambient to 90°F) is applied at moderate pressure to mobilize weathered oil that has adhered to rocks. If the warm water is not sufficient to flush the oil down the beach, "deluge" flooding or additional low- or high-pressure washing can be used to float the oil to the water's edge for pickup. Oil is trapped by booms and picked up with skimmers or sorbents.

9420.4.10.3 Applicable Shoreline Types

This method may be used on heavily oiled gravel beaches, rip rap, and hard, vertical, manmade structures such as seawalls, bulkheads, and docks.

9420.4.10.4 When to Use

This method may be used when the oil has weathered to the point that lowpressure washing with ambient water is not effective for removal of adhered oil, which must be removed due to continued release of oil. It may also be used to remove oil from man-made structures for aesthetic reasons.

9420.4.10.5 Biological Constraints

This method can only be used at certain tidal elevations, so that the oil/water effluent does not drain across sensitive low-tide habitats (damage can result from exposure to oil, oiled sediments, and warm water). Its use should be restricted in areas adjacent to stream mouths, tide pool communities, and similar rich intertidal communities.

9420.4.10.6 Environmental Effects

Intertidal – Temperature change can kill attached organisms. This method may drive oil deeper into substrate if the water jet is not properly applied. Foot traffic,

hoses, and the need for compressors and heaters will increase the physical impact to the environment. If containment methods are not sufficient, contamination may be flushed into lower intertidal zones that would otherwise not be oiled.

Subtidal – Oiled sediment may be transported to shallow subtidal areas, contaminating them and burying benthic organisms.

9420.4.11 Hot Water >90° F/Moderate Pressure Washington 50 to 100 psi

9420.4.11.1 Objective

The objective of this method is to dislodge and mobilize trapped and weathered oil from inaccessible locations and surfaces not amenable to mechanical removal prior to flushing oil to the water's edge for collection.

9420.4.11.2 Description

In this method, water heaters mounted offshore on barges or small land-based units heat water to temperatures from 90°F up to 170°F, which is usually sprayed by hand with moderate-pressure wands. Used without water flooding, this procedure requires immediate use of vacuum (vacuum trucks or super suckers) to remove the oil/water runoff. With a deluge system, the oil is flushed to the water's surface for collection with skimmers or sorbents.

9420.4.11.3 Applicable Shoreline Types

This method may be used on heavily oiled manmade, vertical structures such as seawalls, bulkheads, and docks.

9420.4.11.4 When to Use

This method may be used when the oil has weathered to the point that even warm water at high pressure is not effective for removal of adhered oil, which must be removed due to continued release of oil. It may also be used to remove oil from man-made structures for aesthetic reasons.

9420.4.11.5 Biological Constraints

Use of this method is restricted to certain tidal elevations so that the oil/water effluent does not drain across sensitive low-tide habitats (damage can result from exposure to oil, oiled sediments, and hot water). Its use should be restricted to areas near stream mouths, tide pool communities, etc. Released oil must be recovered to prevent further oiling of adjacent environments.

9420.4.11.6 Environmental Effects

Intertidal – All attached organisms in the direct spray zone will be dislodged or killed, and significant mortality (temperature impact) of the lower intertidal communities may result even when used properly. This method may drive oil deeper into substrate if the water jet is improperly applied. Foot traffic, hoses, and the need for compressors will increase the physical impact to the environment. Where the intertidal community is rich, the tradeoff between damage to the intertidal community from the hot-water washing versus potential damage from leaving the oil has to be weighed.

Subtidal – Oiled sediment may be transported to shallow subtidal areas, contaminating them and burying benthic organisms.

9420.4.12 Vacuum Removal of Oil 9420.4.12.1 Objective

The objective of this method is to remove free oil pooled on the substrate or from the water's surface in sheltered areas.

9420.4.12.2 Description

This method uses a vacuum unit with a suction head to recover free oil. The equipment can range from small portable units that fill individual 55-gallon drums to large supersuckers that are truck-mounted and can lift large rocks. It can be used with water spray systems to flush the oil toward the suction head.

9420.4.12.3 Applicable Shoreline Types

This method can be used on any shoreline type if accessible; it is not generally recommended for soft mud substrates where mixing of oil deeper in the sediment might occur. Vacuum units may be mounted offshore on barges, onshore on trucks, or as individual units on boats or ashore at low tide.

9420.4.12.4 When to Use

This method may be used when free, liquid oil is stranded on the shoreline (usually along the high-tide line) or trapped in vegetation that is readily accessible.

9420.4.12.5 Biological Constraints

Special restrictions should be identified for areas where foot traffic and equipment operation should be limited, such as rich intertidal communities. Operations in wetlands are to be very closely monitored, with a site-specific list of restrictions.

9420.4.12.6 Environmental Effects

Intertidal – This method has minimal intertidal environmental impacts if used properly and minimal substrate is removed.

Subtidal – This method has no subtidal environmental effects in addition to those caused by the spilled oil.

9420.4.13 Sediment Reworking 9420.4.13.1 Objective

The objective of this method is to rework oiled sediments to break up oil deposits, increase its surface area, and mix deep subsurface oil layers that will expose the oil to natural removal processes and enhance the rate of oil degradation.

9420.4.13.2 Description

In this method, beach sediments are rototilled or otherwise mechanically mixed with the use of heavy equipment on gravel beaches. The oiled sediments in the upper beach area may also be relocated lower on the beach to enhance natural cleanup during reworking by wave activity (berm relocation).

9420.4.13.3 Applicable Shoreline Types

This method should be used only on beaches exposed to significant wave activity. Tilling-type activities work best on beaches with a significant sand fraction; large equipment can be used to relocate sediments up to boulder size.

9420.4.13.4 When to Use

This method can be used on beaches with significant amounts of subsurface oil, where sediment removal is unfeasible (due to erosion concerns or disposal problems) or where surface oil deposits have started to form pavements or crusts. It may not be appropriate in archaeological and/or culturally sensitive areas.

9420.4.13.5 Biological Constraints

This method should not be used on beaches near shellfish-harvest or fishspawning areas, or near bird nesting or concentration areas because of the potential for constant release of oil and oiled sediments. Sediment reworking should be restricted to the upper part of the beach to prevent disturbance of the biological communities in the lower intertidal area.

9420.4.13.6 Environmental Effects

Intertidal – Due to the mixing of oil into sediments, this process could further expose organisms living below the original layer of oil. Repeated mixing over time could delay the re-establishment of organisms. Relocated sediments would bury and kill organisms. There may be a period of beach instability as the relocated sediments are redistributed.

Subtidal – There is a potential for release of contaminated sediments to the nearshore subtidal habitats.

9420.4.14 Sediment Removal, Cleansing, and Replacement 9420.4.14.1 Objective

The objective of this method is to remove oiled sediments and replace them with cleaned or new material.

9420.4.14.2 Description

In this method, oiled sediments are excavated using heavy equipment on the beach at low tide. The sediments are loaded into a container for washing. Cleansing methods include hot water wash or physical agitation with a cleansing solution. After the cleansing process, the rinsed materials are returned to the original area. Cleaning equipment must be placed close to beaches to reduce transportation problems. If it is not possible to clean the oiled sediment, it can be replaced with new material of similar composition.

9420.4.14.3 Applicable Shoreline Types

This method can be used on sand- to boulder-sized beaches, including rip rap. The beaches must be exposed to wave activity so that the replaced sediments can be reworked into a natural distribution.

9420.4.14.4 When to Use

This method can be used on beaches with large amounts of subsurface oil, where permanent removal of sediment is undesired and other cleanup techniques are likely to be ineffective. It may not be appropriate in archaeological and/or culturally sensitive areas.

9420.4.14.5 Biological Constraints

Excavating equipment must not intrude upon sensitive habitats. Only the upper and supratidal areas should be considered. This method is generally restricted in spawning areas. There may be site-specific constraints limiting placement of temporary sediment storage piles. Replaced material must be free of oil and toxic substances. The washing must not change the grain size of the replaced material, either by removal of fines or excessive breakage of friable sediments. If new material is used, it must have a similar composition and grain size distribution as removed sediment.

9420.4.14.6 Environmental Effects

Intertidal – All resident organisms will be affected, though the need for removal of the oil may be determined to be the best overall solution. Equipment can be heavy, large, and noisy, disrupting wildlife. Transportation to the site may entail aircraft, land vehicles, or barges, contributing to environmental disruption. There may be a period of beach instability as the replaced sediments are redistributed.

Subtidal – This method may involve the release of oil and fine grained oily sediments into the water during excavation. This is a concern due to tidal flushing of beach sediments and exposed excavations.

9420.4.15 Cutting Vegetation 9420.4.15.1 Objective

The objective of this method is to removal oiled vegetation to prevent the oiling of wildlife.

9420.4.15.2 Description

In this method, manual cutting of oiled vegetation and removal of cut vegetation with rakes. The cut vegetation is bagged immediately for disposal.

9420.4.15.3 Applicable Shoreline Types

This method may be used on marshes, protected rock, boulder beaches, and low vegetated river bank.

9420.4.15.4 When to Use

This method may be used when large quantities of potentially mobile oil are trapped in vegetation or when the risk of oiled vegetation contaminating wildlife is greater than the value of the vegetation that is to be cut, and there is no less destructive method available to remove or reduce the risk to acceptable levels.

9420.4.15.5 Biological Constraints

Strict monitoring of the operations used in this method must be conducted to minimize the degree of root destruction and mixing of oil deeper into the sediments. For plants attached to rock boulder or cobble beaches, sources of population recruitment must be considered. Access to bird nesting areas should be restricted during nesting seasons.

9420.4.15.6 Environmental Effects

Intertidal – Removal of vegetation will result in loss of habitat for many animals. Cut areas will have reduced plant growth for up to two years. Along the exposed section of shoreline, the vegetation may not regrow, resulting in erosion and permanent loss of the habitat. Trampled areas (which are inevitable) will recover much more slowly.

Subtidal – Long-term subtidal impacts include increased sediment load in the subtidal area as a result of increased erosion in the intertidal area.

9420.5 Shoreline Countermeasure Methods Using Alternative Technology

Shoreline countermeasure based on conventional technology are not always successful in minimizing impacts or speeding up recovery of shorelines impacted by stranded oil. Research and development is ongoing for both new and improved oil spill treatment methods. Various chemical, thermal, and biological techniques are currently being tested for effectiveness and toxicity, and may be approved for use in certain situations. Methods considered to be of potential use in this area are described below.

- 15 In-situ Burning on Shoreline
- 16a Chemical Oil Stabilization with Elastomizers
- 16b Chemical Protection of Beaches
- 16c Chemical Cleaning of Beaches
- 17 Nutrient Enhancement
- 18 Microbial Addition

9420.5.1 In-Situ Burning on Shorelines

9420.5.1.1 Objective

The objective of this method is to removal oil from the shoreline by burning.

9420.5.1.2 Description

In this method, oil on the shoreline is burned, usually when it is on a combustible substrate such as vegetation, logs, and other debris. Oil can be burned off of

nonflammable substrates with the aid of a burn promoter. Appropriate air quality agencies must be notified prior to the burn.

9420.5.1.3 Applicable Shoreline Types

This method may be used on any shoreline type except tidal flats.

9420.5.1.4 When to Use

This method may be used early in the spill event, after ensuring that the product is ignitable. It must comply with the Northwest Area Contingency Plan (NWACP) *In Situ* Burning Policy.

9420.5.1.5 Biological Constraints

This method should only be considered for use in the upper intertidal or supratidal zones since destruction of plants and animals from heat and burn promoters will be extensive. This technique is subject to restrictions and permit requirements established by federal, state, and local laws. It should not be used to burn polychlorinated biphenyls (PCBs), wastes containing more than 1,000 parts per million (ppm) of halogenated solvents, or other substances regulated by the United States Environmental Protection Agency.

9420.5.1.6 Environmental Effects

Little is known about the relative effects of burning oiled wetlands compared to other techniques or natural recovery. Burning may cause significant air pollution, which must be considered when weighing the potential benefits and risks of the technique. The combustion products may travel great distances before deposition.

9420.5.2Chemical Oil Stabilization with Elastomizers9420.5.2.1Objective

The objective of this method is to solidify or gelatinize oil on the water's surface or a beach to keep it from spreading or escaping, and to speed recovery rate and efficiency.

9420.5.2.2 Description

In this method, a chemical agent enhancing polymerization of the hydrocarbon molecules is applied by semiliquid spray or as a dry chemical onto the oil in the proper dosage. Depending on the nature and concentration of the polymerizing agent, the oil can be rendered viscoelastic, but still fluid, gelatinous, or semisolid. The primary purpose of this technique is to stabilize the oil, keeping it from spreading or escaping, causing oiling elsewhere. It may reduce the solubility of the light (and more toxic) fractions by locking them into the polymer, thus reducing both air and water exposure. Depending on the beach type and equipment used, recovery may be enhanced.

9420.5.2.3 Applicable Shoreline Types

This method may be used on shorelines of low permeability where heavy oil has pooled on the surface, except vegetated shorelines.

9420.5.2.4 When to Use

This method may be used when heavy concentrations of liquid oil are on the substrate and adjacent water body, and physical removal cannot be completed prior to the next tide so that the oil is likely to move to a more sensitive shoreline type. It should be used in conjunction with booming or other physical containment and must comply with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and NWACP.

9420.5.2.5 Biological Constraints

This method is not suitable for vegetated or rip rap shore types. It should be avoided when birds or other wildlife that may be more adversely impacted by the congealed oil cannot be kept away from the treated shoreline. The congealed oil may stick to vegetation and wildlife, increasing physical damage to both. On rip rap, the congealed oil may remain in crevices, where it may hamper recovery and prolong the release of sheens.

9420.5.2.6 Environmental Effects

This method may enhance the smothering effect of oil on intertidal organisms. Thus, the treatment should be considered only for heavily oiled beaches where smothering effects are already maximal. The congealed oil may stick to vegetation and wildlife, increasing physical damage, such as impaired flight in birds or impaired thermoregulation in mammals and birds whose feathers or fur become oiled.

9420.5.3 Chemical Protection of Beaches

9420.5.3.1 Objective

The objective of this method is to pretreat the shoreline to prevent oil from adhering to the substrate.

9420.5.3.2 Description

In this method, certain types of water-based chemicals, some of which are similar in composition to dispersants, are applied to beaches in advance of the oil.

9420.5.3.3 Applicable Shoreline Types

This method be used on coarse and fine grained sand beaches, seawalls, and piers (particularly piers or waterfront facilities that are of historical significance), eroding bluffs, wave-cut platforms, and rip rap.

9420.5.3.4 When to Use

This method may be used when oil is projected to impact an applicable shoreline, particularly those with high recreational or aesthetic value. Use of this method must comply with the NCP and NWACP.

9420.5.3.5 Biological Constraints

This method may not be suitable for nutrient-rich environments, particularly in confined waters. The toxicity of shoreline treatment products is reportedly much

less than that of oil, but the toxicity of each product should be evaluated prior to consideration for use.

9420.5.3.6 Environmental Effects

The long-term environmental effects of these procedures are unknown. A toxic effect of the chemical can be anticipated. Additionally, the nutrient load to nearshore and interstitial waters may lead to eutrophication. Whether the predicted reduced residence time of the oil on the beach will increase the survival rate for sessile and interstitial organisms is unknown.

9420.5.4 Chemical Cleaning of Beaches

9420.5.4.1 Objective The objective of this method is to increase the efficiency of oil removal from

contaminated areas.

9420.5.4.2 Description

In this method, special formulations, which can be characterized as weak dispersants, are applied to the substrate, as a presoak and/or flushing solution, to soften weathered or heavy oils to aid in the efficiency of flushing treatment methods. The intent is to be able to lower the temperature and pressure required to mobilize the oil from the substrate.

9420.5.4.3 Applicable Shoreline Types

This method may be applied to any shoreline where deluge and water flushing procedures are applicable.

9420.5.4.4 When to Use

This method may be used when the oil has weathered to the point where it will not flow using warm to hot water. This approach may be most applicable where flushing decreases in effectiveness as the oil weathers. Use of this method must comply with the NCP and NWACP.

9420.5.4.5 Biological Constraints

This method will require extensive biological testing for toxicity and water quality sampling prior to receiving approval for use. There is some concern that the treated oil will be dispersed in the water column, and thus impact water column and subtidal organisms. Field tests will be required to show that use of a beach cleaner does not reduce overall recoverability of the oil. Use may be restricted where suspended sediment concentrations are high, adjacent to wetlands and tidal flats, and near sensitive subtidal resources.

9420.5.4.6 Environmental Effects

If more oil is dispersed into the water column, there could be more oil adsorbed onto suspended sediments and transferred to subtidal habitats, particularly along sheltered shorelines. Intertidal habitats might survive better, if cooler water temperatures are possible.

9420.5.5 Nutrient Enhancement

9420.5.5.1 Objective

The objective of this method is to speed the rates of natural microbial degradation of oil by the addition of nutrients (specifically nitrogen and phosphorus). Microbial biodegradation is the conversion by microorganisms of dissolved and dispersed hydrocarbons into oxidized products via various enzymatic reactions. Some hydrocarbons are converted to carbon dioxide and cell material, while others are partially oxidized and/or left unaltered as a residue.

9420.5.5.2 Description

Nutrients are applied to the shoreline in one of several methods: soluble inorganic formulations that are dissolved in water and applied as a spray at low tide, requiring frequent applications; slow-release formulations that are applied as a solid to the intertidal zone and designed to slowly dissolve; and oleophilic formulations that adhere to the oil itself, thus, they are sprayed directly on the oiled areas.

9420.5.5.3 Applicable Shoreline Types

This method can be used on any shoreline type where safe access is allowed.

9420.5.5.4 When to Use

This method may be used on moderately to heavily oiled shorelines, after other techniques have been used to remove as much oil as possible; on lightly oiled shorelines where other techniques are not effective; and where nutrients are a limiting factor in natural degradation. It may potentially be used for the treatment of subsurface oil. Use of this method must comply with the NCP and NWACP.

9420.5.5.5 Biological Constraints

This method is not applicable in shallow water; poorly flushed, restricted embayments where nutrient overloading may lead to eutrophication; or where toxicity of nutrients, particularly ammonia, is of concern. There must be no risk of oxygen depletion. Use is to be restricted adjacent to stream mouths, tide pools, etc. Contact toxicity of oleophilic formulations may restrict areas of direct application. Bioassay test results should be carefully evaluated, as other chemicals in the formulations could be toxic to aquatic organisms.

9420.5.5.6 Environmental Effects

Tests in Alaska showed that interstitial oxygen concentrations did not decrease to such an extent that it limited the supply of oxygen available to the bacteria. The fertilizer applications that increased nutrient concentrations and microbial activity did not harm the nearshore environment. About 99 percent of butoxyethanol, a toxic component of the Inipol formulation (the fertilizer commonly used in Alaska), degraded to nontoxic compounds within 24 hours after Inipol treatments of cobble shorelines. Inipol was initially toxic to intertidal organisms directly contacted during application. Researchers also found no evidence that the nutrients released from the treated shorelines stimulated algal blooms.

9420.5.6 Microbial Addition

9420.5.6.1 Objective

The objective of this method is to speed the rates of natural microbial degradation of oil by addition of nutrients and microbial products. Microbial biodegradation is the conversion by microorganisms of dissolved and dispersed hydrocarbons into oxidized products via various enzymatic reactions. Some hydrocarbons are converted to carbon dioxide and cell material, while others are partially oxidized and/or left untouched as a residue.

9420.5.6.2 Description

In this method, formulations containing hydrocarbon-degrading microbes and fertilizers are added to the oiled area. The argument is made that indigenous organisms will be killed by the oil, so new microbial species need to be added to begin the process of biodegradation. To date, microbial addition has not been shown to work better than fertilizer alone in field tests.

9420.5.6.3 Applicable Shoreline Types

This method can be used on any shoreline type where safe access is allowed.

9420.5.6.4 When to Use

This method may be used on moderately to heavily oiled shorelines, after other techniques have been used to remove as much oil as possible; on lightly oiled shorelines where other techniques are not effective; and where oil degrading bacteria are a limiting factor in natural degradation. It may potentially be used for the treatment of subsurface oil. Use of this method must comply with the NCP and NWACP.

9420.5.6.5 Biological Constraints

This method is not to be used in shallow water; poorly flushed, restricted embayments where nutrient overloading may lead to eutrophication; or where toxicity of nutrients, particularly ammonia, is of concern. There must be no risk of oxygen depletion. Use of this method is to be restricted adjacent to stream mouths, tide pool communities, etc. Bioassay test results should be carefully evaluated, as other chemicals in the formulation could be toxic to aquatic organisms.

9420.5.6.6 Environmental Effects

The environmental effects of this method are yet to be evaluated for full-scale field applications.

9420.6 Matrices of Recommended Countermeasure Methods by Oil and Shoreline Type

The matrices included in this section show which shoreline countermeasure techniques have been considered for the 14 shoreline types described in Section 9420.3, above. Four matrices have been constructed for the major categories of oil (very light, light, medium, and heavy).

Countermeasure methods are described in Sections 9420.4 and 9420.5, above. The countermeasures discussed in Section 9420.4, "Shoreline Countermeasure Methods Using Conventional Response Technology" are traditional or conventional techniques that the OSC can use without any additional concurrence. However, the cutting of vegetation countermeasure should be used only during specific seasonal windows under specific conditions and with landowner approval. The countermeasures discussed in Section 9420.5, "Shoreline Countermeasure Methods Using Alternative Technology," may be useful in certain situations. These methods are considered more experimental and controversial in their application and potential impacts and require more formal review and consultation before implementing. The exact requirements are spelled out in the NCP and NWACP. The Shoreline Countermeasures Matrices are a particularly dynamic component of the manual and should continue to be revised as the existing techniques are used and evaluated, and as both old and new techniques are refined.

Each matrix has a written explanation of how it is to be used as a countermeasure advisability matrix. The matrix is only a general guide for removing oil from shoreline substrates. It must be used in conjunction with the entire "Shoreline Countermeasures Manual," plus field observations and scientific advice. The countermeasures listed are not necessarily the best under all circumstances, and any listed technique may need to be used in conjunction with other techniques (including ones not listed herein). The Federal On-Scene Coordinator (FOSC) or the State On-Scene Coordinator (SOSC) operating with the FOSC's authorization has the responsibility for and authority to determine which countermeasure(s) are appropriate for the various situations encountered.

Selection of countermeasure techniques to be used in each spill is based upon the degree of oil contamination, shoreline types, and the presence of sensitive resources. Extremely sensitive areas are generally limited to manual cleanup methods. It is important to note that the primary goal of countermeasure implementation is the removal of oil from the shoreline with no further injury or destruction to the environment. The three categories of guidance used in the matrices are defined as follows:

R	Recommended	May be the preferred method that best achieves the goal of
		minimizing destruction or injury to the environment.
С	Conditional	Viable and possibly useful but may result in limited
		adverse effects to the environment.
	Shaded	Not applicable or not generally recommended.

Shoreline Countermeasures Matrix

Very light oil (jet fuels, gasoline)

- Highly volatile (should all evaporate within 1–2 days)
- High concentration of toxic (soluble) compounds
- Result: Localized, severe impacts to water column and intertidal resources
- Duration of impact is a function of the resource recovery rate
- No dispersion necessary

SHORELINE TYPES CODES

1	Exposed rock shores and vertical, hard man-made	6C	Exposed rip rap
	structure (e.g., seawalls)		
2	Exposed wave-cut platforms	7	Exposed tidal flat
3	Fine to medium grained sand beaches & steep	8A	Sheltered vertical rock shores and vertical,
	unvegetated river banks		hard man-made structures (e.g., seawalls, docks)
4	Coarse grained sand beaches	8B	Sheltered rubble slope
5	Mixed sand and gravel beaches, including artificial	9A	Sheltered sand and mud flats
	fill containing a range of grain size and material 6A	9B	Sheltered vegetated low bank
	- Gravel beaches - pebbles to cobble		
6B	Gravel beaches - cobbles to boulders	10	Marshes
	SHORELIN	NE TY	PES

COUNTERMEASURES	1	2	3	4 4	5		6B	6C	7	8A	8B	9A	9B	10
CONVENTIONALMETHODS														
No action	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Manual removal of oil														
Passive collection of oil			С	С	С	С	С	С						
Oiled debris removal	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Trenching/recovery wells			С	С	С									
Oiled sediment removal														
Ambient water flooding (Deluge)														С
Amb water flush <50 psi														
Amb water flush <100 psi														
Warm water flush <90°F														
Hot water flush >90°F														
Vacuum removal of oil														
Sediment reworking			С	С	С	С								
Sediment Removal- cleaning-replacement														
Cutting oiled vegetation														
ALTERNATIVE METHODS*														
In-situ burning on shore														
Chemical stabilization, protection, or cleaning														
Nutrient enhancement														
Microbial addition														

R Recommend – May be Preferred Alternative

C Conditional (Refer to NW Shoreline Countermeasures Manual)

Shaded areas are Not Applicable or Not Generally Recommended

Follow approved process defined in NCP and NW Area Plan

This countermeasure advisability matrix is only a general guide for removal of oil from shoreline substrates. It must be used in conjunction with the entire Shoreline Countermeasures Manual plus field observations and scientific advice. The countermeasures listed are not necessarily the best under all circumstances, and any listed technique may need to be used in conjunction with other techniques (including ones not listed herein). The Federal On-Scene Coordinator (FOSC) or the state OSC operating with the FOSC's authorization has the responsibility for and the authority to determine which countermeasure(s) are appropriate for various situations encountered. Selection of countermeasures is based on the degree of oil contamination, the shoreline type, and the presence of sensitive resources.

Shoreline Countermeasures Matrix

Light Oil (Diesel, No. 2 Fuel Oils, Light Crudes

- Moderately volatile; will leave residue (up to 1/3 of spilled amount)
- . Moderate concentrations of toxic (soluble) compounds .
 - Long-term contamination of intertidal resources possible
- Potential for subtidal impacts (dissolution, mixing, sorption onto suspended sediments)
- No dispersion necessary
- Cleanup can be very effective

SHORELINE TYPES CODES

							YPES												
1	Exposed rock shores structure (e.g. seawa	6C	Exposed rip rap																
2	Exposed wave-cut pl		s				7	Expo	sed tid	al flat									
3	Fine to medium grain unvegetated river bar	8A	Sheltered vertical rock shores and vertical, hard man-made structures (e.g. seawalls, docks)																
4										Sheltered rubble slope									
5	Mixed sand and gray	el hea	ches in	ncludir	o artifi	icial	8B 9A	Sheltered sand and mud flats											
5	Mixed sand and gravel beaches, including artificial fill containing a range of grain size and material 6A – Gravel beaches – pebbles to cobble							Sheltered vegetated low bank											
6B Gravel beaches – cobbles to cobble							10	Mars	hes										
				S	SHOR	ELIN	E TY	PES				-							
COU	NTERMEASURES	1	2	3	4	5	6A	6B	6C	7	8A	8B	9A	9B	10				
CONV	ENTIONAL METHODS																		
No ac	tion	R	R	С	С	С	С	С	С	R	С	С	R	С	R				
Manu	al removal of oil			С	С	С	С	С	С		R	R		С					
Passiv	ve collection of oil	С	R	R	R	R	R	R	R	С	R	R	С	R	R				
Oiled	debris removal	С	С	R	R	R	R	R	R	С	R	R	С	С	С				
Trenching/recovery wells				С	С	С													
Oiled	sediment removal			С	С	С	С												
Ambie (Delug	ent water flooding ge)			С	С	С	R	R	R			С			С				
Amb	water flush <50 psi		С			С	С	С	С		R	С			С				
Amb	water flush <100 psi																		
Warm	water flush <90°F																		
Hot w	ater flush >90°F																		
Vacu	um removal of oil							С	С						С				
Sedin	nent reworking			С	С	С	С												
	ent Removal-			С	С	С													
	ng-replacement																		
	ng oiled vegetation		_	_				С	С		С	С		С	С				
	RNATIVE METHODS*																		
In-situ shore	u burning of																		
Chem	ical stabilization,																		
protec	tion, or cleaning																		
Nutrie	ent enhancement			С	С	С	С	С	С						С				
Micro	bial addition																		
	December 1 Ma		-	1 . 1 .								-							

Recommend – May be Preferred Alternative

Conditional (Refer to NW Shoreline Countermeasures Manual) C

Shaded areas are Not Applicable or Not Generally Recommended

Follow approved process defined in NCP and NW Area Plan

This countermeasure advisability matrix is only a general guide for removal of oil from shoreline substrates. It must be used in conjunction with the entire Shoreline Countermeasures Manual plus field observations and scientific advice. The countermeasures listed are not necessarily the best under all circumstances, and any listed technique may need to be used in conjunction with other techniques (including ones not listed herein). The Federal On-Scene Coordinator (FOSC) or the state OSC operating with the FOSC's authorization has the responsibility for and the authority to determine which countermeasure(s) are appropriate for various situations encountered. Selection of countermeasures is based on the degree of oil contamination, the shoreline type, and the presence of sensitive resources.

R

Shoreline Countermeasures Matrix

Medium Oil (Most Crude Oils & Some Heavily Weathered Light Crudes)

- About ¹/₃ will evaporate within 24 hours
- Maximum water-soluble fraction is 10-100ppm
- Oil contamination of intertidal areas can be severe and long-term
- Impact to waterfowl and fur-bearing mammals can be severe
- Chemical dispersion is an option within 1-2 days
- Cleanup most effective if conducted quickly SHOPFLINE TYPES CODES

				SHO	RELI	NE T	YPES	COD	ES										
1	Exposed rock shores	6C	Exposed rip rap																
	structure (e.g. seawa	_	Eveneed tidel flot																
2	Exposed wave-cut pl	7	Exposed tidal flat																
3	Fine to medium grain	8A	Sheltered vertical rock shores and vertical,																
	unvegetated river bar							hard man-made structures (e.g., seawalls, docks) Sheltered rubble slope											
4	Coarse grained sand						8B												
5	Mixed sand and grav						9A		ered sa										
	fill containing a range of grain size and material 6A								Sheltered vegetated low bank										
	 Gravel beaches – pebbles to cobble 								č										
6B	Gravel beaches - col	obles to	o bould				10	Marshes											
			-		HOR	ELIN	NE TYPES												
COU	NTERMEASURES	1	2	3	4	5	6A	6B	6C	7	8A	8B	9A	9B	10				
CONV	ENTIONAL METHODS																		
No ac	tion	С	С	С	С	С	С	С	С	R	С	С	R	С	R				
Manu	al removal of oil	С	R	R	R	R	С	С	С		R	R		С	С				
Passiv	ve collection of oil	R	R	R	R	R	R	R	R	С	R	R	R	R	R				
	debris removal	С	R	R	R	R	R	R	R	С	R	R	С	R	С				
Trenching/recovery				С	С	С													
wells	sediment removal																		
	ent water flooding			С	С	С	С							С					
(Delug				С	С	С	R	R	R		R	R		С	С				
Amb	water flush <50 psi	С	С			С	R	С	R		R	R		С	С				
Amb	water flush <100 psi	С	С					С	С		С								
Warm	n water flush <90°F	С						С	С		С								
Hot w	/ater flush >90°F	С									С								
Vacu	um removal of oil	С	С	R	R		С	R	R		С	С		С	С				
	nent reworking			С	С	С	С												
	ent Removal-			С	С	С	С		С			С							
	ng-replacement																		
	ng oiled vegetation							С	С		С	С		С	С				
ALTE	RNATIVE METHODS*																		
	ı burning on																		
shore																			
	ical stabilization,																		
protec	tion, or cleaning																		
Nutrie	ent enhancement			С	С	С	С	С	С			С			С				
Micro	bial addition																		

Recommend - May be Preferred Alternative

Conditional (Refer to NW Shoreline Countermeasures Manual) С

Shaded areas are Not Applicable or Not Generally Recommended

Follow approved process defined in NCP and NW Area Plan

This countermeasure advisability matrix is only a general guide for removal of oil from shoreline substrates. It must be used in conjunction with the entire Shoreline Countermeasures Manual plus field observations and scientific advice. The countermeasures listed are not necessarily the best under all circumstances, and any listed technique may need to be used in conjunction with other techniques (including ones not listed herein). The Federal On-Scene Coordinator (FOSC) or the State On-Scene Coordinator operating with the FOSC's authorization has the responsibility for and the authority to determine which countermeasure(s) are appropriate for various situations encountered. Selection of countermeasures is based on the degree of oil contamination, the shoreline type, and the presence of sensitive resources.

R

Shoreline Countermeasures Matrix

Heavy Oil (Heavy Crude Oils, Intermediate Fuel Oils, Bunker C & Heavily Weathered Medium Crudes)

- Heavy oils with little or no evaporation or dissolution
- . Water-soluble fraction likely to be <10ppm
- Heavy contamination of intertidal areas likely
- Severe impacts to waterfowl and fur-bearing mammals (coating and ingestion)
- Long-term contamination to sediments possible
- Weathers very slowly
- Dispersion seldom effective
- Shoreline cleanup difficult under all conditions DEC CODEC

	SHORELINE TYPES CODES										
1	Exposed rock shores and vertical, hard man-made	6C	Exposed rip rap								
	structure (e.g. seawalls)										
2	Exposed wave-cut platforms	7	Exposed tidal flat								
3	Fine to medium grained sand beaches & steep	8A	Sheltered vertical rock shores and vertical,								
	unvegetated river banks		hard man-made structures (e.g. seawalls, docks)								
4	Course grained sand beaches	8B	Sheltered rubble slope								
5	Mixed sand and gravel beaches, including artificial	9A	Sheltered sand and mud flats								
	fill containing a range of grain size and material 6A	9B	Sheltered vegetated low bank								
	- Gravel beaches - pebbles to cobble										
6B	Gravel beaches - cobbles to boulders	10	Marshes								

SHORELINE TYPES														
COUNTERMEASURES	1	2	3	4	5	6A	6B	6C	7	8A	8B	9A	9B	10
CONVENTIONAL METHODS														
No action	С	С	С	С	С	С	С	С	R	С	С	R	С	R
Manual removal of oil	С	R	R	R	R	С	С	С		R	R		С	С
Passive collection of oil	R	R	R	R	R	R	R	R	С	R	R	С	R	R
Oiled debris removal	С	R	R	R	R	R	R	R	С	R	R	С	R	С
Trenching/recovery wells			С	С	С									
Oiled sediment removal			С	С	С	С		С					С	
Ambient water flooding (Deluge)			С	С	С	R	R	R		R	R		С	С
Amb water flush <50 psi	С	С			С	R	С	R		С	С		С	С
Amb water flush <100 psi	С	С					С	С		С	С			
Warm water flush <90°F	С						С	С		С				
Hot water flush >90°F	С									С				
Vacuum removal of oil	С	С	С	С	С	С	С	С	1	С	С		С	С
Sediment reworking			С	С	С	С								
Sediment Removal- cleaning-replacement			С	С	С	С		С						
Cutting oiled vegetation							С	С		С	С		С	С
ALTERNATIVE METHODS*														
In-situ burning on shore														
Chemical stabilization, protection, or cleaning														
Nutrient enhancement			С	С	С	С	С	С						С
Microbial addition														

С Conditional (Refer to NW Shoreline Countermeasures Manual)

Shaded areas are Not Applicable or Not Generally Recommended

Follow approved process defined in NCP and NW Area Plan

This countermeasure advisability matrix is only a general guide for removal of oil from shoreline substrates. It must be used in conjunction with the entire Shoreline Countermeasures Manual plus field observations and scientific advice. The countermeasures listed are not necessarily the best under all circumstances, and any listed technique may need to be used in conjunction with other techniques (including ones not listed herein). The Federal On-Scene Coordinator (FOSC) or the state OSC operating with the FOSC's authorization has the responsibility for and the authority to determine which countermeasure(s) are appropriate for various situations encountered. Selection of countermeasures is based on the degree of oil contamination, the shoreline type, and the presence of sensitive resources.

9420 A Attachment A: Guidelines for Treatment Operations

General Guidelines

Ensure familiarity and compliance with approved treatment methods, approved shoreline segment work plans, advisories, and special instructions. Restrict all access to wetlands and tidal flats, except with special authorization.

Conditions to Avoid

- Treatment techniques (such as high pressure and hot water) that dislodge intertidal vegetation and invertebrates, e.g., mussels, barnacles, snails.
- Clearing marshes and vegetated shorelines (the presence of algae does not characterize a vegetated shoreline).

Actions to Encourage

- Boom off mud/grass flat adjacent to treatment areas to prevent further contamination.
- Boom off tidal creeks to prevent further contamination.
- Minimize impact to uncontaminated lower intertidal zones, including:
 - Land crews during tides that cover the lower intertidal zone
 - Avoid high-/low-pressure washing where possible
 - Work heavily oiled upper beach zone hen lower intertidal zones are covered by high tides
 - Employ sorbents along rip rap and below oiled upper beach to protect lower intertidal zone from oiling
- Ensure that all signs of human activity are removed when cleanup is completed.
- Ensure that all trash and wastes are removed daily:
 - Oil trapped in booms must be picked up before the next tide cycle
 - All food and associated trash must be removed each day to minimize attracting wildlife into contaminated areas

Guidelines Specific to Biological Resources

Advisories and special instructions may address:

- Bird concentration areas (nesting sites, colonies, rookeries, etc.)
- Live/dead animal collection policy
- Protection of cultural resources
- Marine mammal haulouts
- Collection of eagle feathers and marine mammal parts
- Cutting bull kelp
- Cutting oiled focus

Appendix B includes existing "best management practices" for specific issues addressed during previous spills, which can be used as the basis for developing regional guidelines.

9420 B Attachment B: Best Management Practices

Specialized Areas of Concern - National

(The following notices are provided as guidelines.) Marine Mammal Notice Collection of Eagle Feathers and Marine Mammal Parts Protection of Cultural Resources Cutting of Oiled Bull Kelp Cutting of Oiled Fucus (Popweed) Instruction for the Disposition of Dead and Live Wildlife

Marine Mammal Notice

(Developed by NOAA in 1989 during the *Exxon Valdez* oil spill.) To reduce stress caused by unnecessary disturbance to marine mammal haulouts and improve the changes for wildlife survival, an aircraft advisory is issued for coastal areas affected by the spill. These advisories request that pilots stay at least one-half mile offshore and 1000 feet above ground level from areas of wildlife concentrations and critical habitats. These areas are shown on maps and distributed to pilots. The most critical areas to avoid are: (list critical areas).

No person, except an authorized government official, will approach, molest, or take a seal or sea lion, regardless of whether the animal is oiled, distressed, lethargic, or abandoned. This reminder is necessitated by the widespread activities of oil spill cleanup personnel in areas where seals and sea lions are giving birth to pups. Although casual and distant human/marine mammal interactions may not always be avoidable, they are, to varying degrees, harmful to the animal. The following explanation and guidance with respect to seal pups is offered in the interest of avoiding law violations and minimizing human-induced mortality among marine mammals.

Live seal pups are to be left undisturbed, whether or not they have oil on them. A pup not accompanied by an adult and/or appearing emaciated may not be abandoned. Females commonly leave their pups alone for extended periods during foraging trips. Newborn and young pups appear emaciated before acquiring fat through nursing. It is not possible to distinguish between a normal pup and one that is truly distressed. In the presence of humans, female seals may only approach their pups at night to nurse them, making determination of abandonment difficult to establish. True abandonment is unlikely, barring death or serious injury to the mother.

Pup deaths will greatly increase if oiled animals are picked up and subjected to the stress of handling, transport, and rehabilitation centers. Unlike sea otters and birds, external oiling does not adversely affect a seal's heat conservation ability or indicate a need for human assistance. Persons finding seals, sea lions, whales, or porpoises that appear to be in distress should contact NOAA Fisheries. Do not touch or closely approach these animals.

Collection of Eagle Feathers and Marine Mammal Parts

In response to inquiries about collecting eagle feathers and marine mammal parts by personnel involved in cleanup activities during a spill, the laws and regulations dealing with the collection and possession of such materials are summarized below.

<u>Collection of Eagle Feathers:</u> The Eagle Act (Public Law 95-616, 92 Stat. 3114, 16 U.S. Code 668) <u>prohibits</u> the collection and possession of any eagle parts, including feathers.

Collection of Marine Mammal Parts: The Marine Mammal Protection Act of 1972 (Public Law 92-522, 88 State. 1027, 95 Stat. 979, 16 USC 1372) generally prohibits the collection and possession of any marine mammal parts. Under 50 Code of Federal Regulations 18.26, the collection of certain dead marine mammal parts is allowed, as follows:

- a. Any bones, teeth or ivory of any (non-endangered) dead marine mammal may be collected from a beach or from land within 1/4 of a mile of the ocean. The term "ocean" includes bays and estuaries.
- b. Marine mammal parts so collected may be retained if registered within 30 days with an agent of the National Marine Fisheries Service, or an agent of the U.S. Fish and Wildlife Service.
- c. Registration shall include (1) the name of the owner, (2) a description of the article to be registered, and (3) the date and location of collection. Items so collected and registered must be retained in the ownership of the collector. <u>The sale of such items is prohibited.</u>

Protection of Cultural Resources

Shoreline cleanup operations have the potential for damaging important archaeological and cultural resources. Authorized shoreline cleanup procedures may uncover undiscovered archaeological features or artifacts. To assist in their identification, drawings of the types of artifacts that might be found in the intertidal zone and along the shoreline by cleanup crews are included. Cleanup personnel should be aware of the policy that anyone found vandalizing or appropriating cultural materials will be subject to full prosecution under the Archaeological Resources Protection Act. If response personnel find any cultural resources (fossils, archaeological or historical artifacts), the following steps should be taken immediately:

- 1. Leave the cultural materials in place at the site of discovery and mark with flagging tape.
- 2. Stop cleanup activities in the surrounding area.
- 3. Inform a designated state representative.

Cutting of Oiled Bull Kelp <u>(*Nereocystis luetkeana*)</u> as a Technique for Releasing and Recovering Trapped Oil

(Based on research by NOAA conducted during the *Tenyo Maru* oil spill, off the coast of Washington, 1991)

Although bull kelp is an annual, with much of a year's growth typically removed by seasonal storms, Dr. Sandra Lindstrom, a phycologist with the University of British Columbia, cautions that removal of the upper portion of the stipe removes the entire active reproductive area of the plant, which is located in the fronds. Bull kelp reproduces by the production of spore cases, which drop to the bottom and subsequently grow into the following season's plants. If cutting is to take place, it should be limited to the fronds, leaving a portion on the plant, which would permit it to nominally survive. Cutting the stipe effectively kills the plant. Cutting kelp beds abruptly changes the light regime on the seafloor below. This may have implications in that growth of young kelp plants is light-mediated, and an increase in light reaching the bottom may result in earlier growth than would otherwise occur.

Secondary ecological impacts of kelp removal should be carefully considered before arriving at a decision about cutting the near-surface portions of plants. The canopy provided by the kelp stipes and blades represents important habitat for fish species such as greenlings and rockfishes (a study in California counted 23 species of fish in a bull kelp bed) and substrate for organisms that are important prey items for fish.

Should cutting take place, cutting the upper portion of the plants is preferable to removing the entire plant, and cutting only the blades and leaving the stipe intact is preferable to removing the gas-filled bulb. Decisions will necessarily balance removal of oil from the environment with direct impacts on the plants and alteration of significant nearshore habitat.

Commercial harvesting equipment similar to that routinely employed in California coastal waters is a possibility, but *Nereocystis* is substantially different in nature than *Macrocystis*. If they worked, such harvesting barges would cut through the stipe and kill the plant. Whether they are capable of cutting the stipe is not known. Support logistics for kelp cutting could be expected to be substantial as well: the large biomass of kelp would require either vessels with considerable hold capacity, or barges on which the plants could be loaded.

Cutting of Oiled Fucus (Popweed)

(Developed by NOAA in 1989 during the *Exxon Valdez* oil spill) The cutting of heavily oiled fucus still attached to the substrate in the intertidal zone is sometimes suggested during shoreline cleanup efforts. At issue is the benefit derived from removing a source of contamination compared with the costs to intertidal systems from fucus removal. Fucus defines the mid-intertidal zone and provides shelter and attachment for other animals. The spores, primarily the very small plants, are a source of food for other animals. The plants are prone to breaking loose in exposed settings and may end up on the beach or in the water. The average half-life of fucus plants is six months, with the large, older overstory plants being up to five years old (in Prince William Sound).

Fucus is a particularly hardy species with respect to oiling. Mortality may occur as a result of the oil preventing photosynthesis from occurring, but it is extremely difficult to determine if a plants is dead or alive by looking at it when oiled. Reproduction in fucus is through the release of spores from buoyant reproductive receptacles that look like small air sacs located on the tips of the plant. The presence of mucus coming out of these receptacles when exposed during low tide indicates that the plant is fertile. Recruitment comes primarily from spores released by plants located no more than three to ten feet away and occurs quite readily as long as sufficient numbers of other fucus plants are in the area. In the absence of other fucus plants, drift spores do come along, but recruitment from this source is very haphazard and not at all guaranteed.

Cutting oiled fucus still attached to the rock is generally not recommended. Flushing (ambient water) and other cleanup techniques should be tried first. If it is deemed necessary to remove heavily oiled fucus to prevent redistribution to very sensitive resources, a sufficient number of mature plants should be left in the area to facilitate recruitment (in patches or fringe three to ten feet apart). If this is not done, recruitment may not take place. It is not necessary to leave the holdfasts when cutting plants.

Instruction for the Disposition of Dead and Live Wildlife

(Derived from the Wildlife Protection Guidelines, Alaska Regional Response Team, 1991)

Dead Animals

- 1. Collect all dead animals (except whale and other large forms), including scavenged carcasses, to discourage further scavenging in oiled areas.
- 2. Wear gloves when handling dead animals.
- 3. Use a shovel or spade to uncover and remove carcasses partially covered by sand, kelp, wood, or other debris.
- 4. Place carcasses in double plastic garbage bags. Place all animals from one beach in one bag, if possible. Close securely with masking tape.
- 5. Complete an animal collection form or provide the following information:
 - a. beach name or location where carcasses were recovered date
 - b. name and address of collector
 - c. species, age, and sex of collected animals.
- 6. If any of this information is not available or questionable, this fact should be recorded so that additional examinations of the animals can be conducted.
- 7. Place the form or list in a ziplock baggie and place the baggie outside the first

garbage bag but inside the second. Bring the dead animals to a designated recovery site

Live Animals

Authorization for animal rescue must be given by the appropriate State or Federal agency prior to the rescue and rehabilitation of oiled wildlife. Long-handled nets, rags, or towels are recommended for capturing live, oiled birds. Wear gloves to

keep from getting oiled. Do not wash oiled birds. It is more important to keep them warm. Place them in a covered cardboard box. It is okay to keep more than one bird and multiple species in the same box. Do not attempt to give birds fluids; they should be taken to a rehabilitation center as soon as possible. For live birds, the following information should be reported:

- beach name or location where animal was recovered date and name and address of collector
- species, age, and sex of collected animals
- condition of the animal

Do not attempt capture of live sea otters without prior authorization from the appropriate agency. Inexperienced people can cause otters additional injuries. In addition, otters may bite and cause infections. A bite from an otter may result in inflammation of the joints and inability to bend one's fingers. Live, oiled otters are to be reported to the designated agency contact for the spill.

9420 C Attachment C: Glossary

Aerobic – Able to live or grow only where free oxygen is present.

Anaerobic – Able to live and grow where there is no air or free oxygen.

Annual – A plant that lives only one year or season.

Aromatic – Organic compounds containing any of a series of benzene ring compounds. They are unsaturated organic ring compounds with low boiling points and are generally toxic to aquatic life.

Benthos – The plants and animals that live in and on the bottom of a water body.

Berm – A wedge-shaped sediment mass built up along the shoreline by wave action. Sand berms typically have a relatively steep seaward face (beach face) and a gently sloping surface (berm top). A sharp crest (berm crest) usually separates the two oppositely sloping planar surfaces on top of the berm. Berms on sand beaches are eroded away during storms, thus a berm may not be present if the beach is visited shortly after a storm. On gravel beaches, however, steep and high storm berms are activated and refurbished during storms.

Biota – Animal and plant life characterizing a given region. Flora and fauna, collectively.

Booms – Both containment and absorbent booms are used for the collection, deflection, and containment of spreading oil. Containment booms are somewhat rigid structures extending both above and below the water acting as barriers to surface oil. Primary containment booms are usually deployed close to oiled shorelines to trap oil being flushed from beaches before it is collected. Secondary containment booms are deployed farther out to trap oil that leaks past primary booms. Absorbent boom is used along the shore-water interface to collect oil dislodged during treatment operations. It is important that absorbent boom be changed once the sorbent capacity is reached. Great care should be taken to seal the shore ends of booms so that no oil can get past. This is particularly difficult at rocky shorelines, or areas strewn with boulders and cobbles. The use of absorbent pads or other materials, such as "pom poms", can be effective sealants.

Brackish – Intermediate in salinity (0.50 to 17.00 parts per thousand) between sea water and fresh water.

Clam shell – A mechanical device mounted at the end of a crane that picks up soil or mud with a pincer-like movement.

Coagulating agent – Chemical additives applied to oil to form a more cohesive mass.

Contact period –The time required to maximize the efficiency of the sorbent or chemical agent or the time before plant or animal damage occurs.

Dispersant – Chemical agent used to disperse and suspend oil in water leading to enhanced biodegradation.

Change 21 January 1, 2020

9420 C-1

Northwest Area Contingency Plan

9420. Northwest Area Shoreline Countermeasures Manual and Matrices

Distillate – A refined hydrocarbon obtained by collection and condensation of a known vapor fraction of the crude oil.

Drag line – A mechanical device that excavates or transports soil, using a container pulled over earth by cables or chains.

Dredge – A device used to remove sediment from the bottom of a water body.

Emulsification – The process by which oil is mixed with water.

Endless rope – A continuous rope-like oil sorbent device that is pulled across the surface of the water to pick up oil.

Erosion – The wearing away by action of water or wind of unprotected or exposed earth.

Estuary – <u>Classic definition</u> A drowned river valley that has a significant influx of fresh water and

is affected by the tides. Most of the coastal water bodies in the mid-Atlantic region are estuaries (e.g., Chesapeake Bay, Delaware Bay).

Evaporation – The conversion of a fluid—including hydrocarbons—to a gaseous state.

Fast ice – Any sea ice that forms along and remains attached to the coast, or that forms between grounded ice bergs, or is attached to the bottom in shallow waters. May form *in situ* from seawater or by freezing of pack ice to the shore. It may extend a few meters to several hundred kilometers from the shore.

Fertilizer – A substance or agent that helps promote plant or seed growth.

Flash point – The lowest temperature at which vapors from a volatile liquid (e.g., oil) will ignite.

Flushing – Use of a water stream to make oil flow to a desired location or recovery device.

Fouling – Accumulation of oil or other materials, such as debris, that makes a device inoperative.

Free oil – See mobile oil.

Gelling agent – See coagulating agents.

Habitat – The chemical, physical, and biological setting in which a plant or animal lives.

Herding agent – Chemical agent that confines or controls the spread of a floating oil film.

Intertidal – The part of the shoreline that lies between high-tide and low-tide water levels.

Lagoon – A shallow, linear, and usually oblong water body, located parallel with and connected to a larger water body by one or more inlet channels.

Landfill – A dump that has progressive layers of waste matter and earth.

Marsh fringe – The edge of the marsh adjacent to the water.

Migration – Seasonal movement of a group of animals from one location to another.

Mobile oil – Oil that can refloat when water is applied (as in high tide).

Mobilization – Movement of oil caused by physical forces, such as gravity, tides, or wind. Mobility of oil is limited by its viscosity.

Mousse – A type of oil/water emulsion.

Non-persistent – Decomposed rapidly by environmental action.

Oil/water separator – A device for separating oil from water.

Oleophilic – A material that has affinity for oil.

Paraffin – The waxy saturated component of crude oil, having relatively high boiling point and low volatility. Any member of the methane series having the general formula $CnH2n+^2$.

Penetration –Downward motion of oil into sediments from the surface driven by gravitational forces.

Perennial – Vegetation that continues to grow for several years.

Permeability – The degree to which fluids can flow through a substance. Measured in Darcys. Permeability is not equal to porosity. High porosity of a material does not insure high permeability. However, a substance cannot be permeable without having some degree of porosity.

Physiography – General term for the shape of the earth's surface.

Pooled oil – Oil thickness exceeds one centimeter. This need not be uniform.

Porosity – The volume of void spaces in a sediment mass, measured in percent.

Rip Rap - (a) A layer of large, durable fragments of broken rock, specially selected and graded, and thrown together irregularly or fitted together. Its purpose is to prevent erosion by waves or currents and thereby preserve the shape of a surface, slope, or underlying structure. It is used for irrigation channels, river-improvement works, spillways at dams, and revetments for shore protection. (b) The stone used for rip rap.

Recontamination - Contamination by oil of an area that was previously cleaned.

Rhizome – A root like stem under or along the ground, ordinarily in a horizontal position, which usually sends out roots from its lower surface and leafy shoots from its upper surface.

Salt pan – A pool above high tide, "drained" only by evaporation so that salt is accumulated and concentrated.

Seine – A fish net that can be used to collect sorbent or debris.

Skimmer – A mechanical device that removes an oil film from the water surface. Oil skimmers collect oil spilled on, or released to, the water's surface. They come in a wide range of shapes and sizes. Skimmers generally have a higher recovery rate than sorbents, providing enough oil is present to justify the costs for its use.

Skimmers are usually equipped with storage space for collected oil. Oil is herded to a collection point along a containment boom located close to shore yet in water of sufficient depth for the skimmer to function. Two types of skimmers currently in use are described below. Other types of skimmers are being tested for possible use at a later date. Band, or "Rope," skimmers use an oleophilic material such as polypropylene. Oil is collected by a floating, continuous rotating band or "rope" drawn through an oil slick or along the water's edge of a contaminated area. Adhered oil is wrung from the band by a squeeze roller and collected in an oil sump. These bands are used in either static (stationary) or dynamic (towed) modes. Bands can be torn by solids or skimmed debris. Efficiency is high in calm waters, poor in choppy waters and waves. Belt skimmers use an oleophilic belt mounted on the front of a small vessel. The oleophilic belt pushes the floating oil below the waterline. Oil not adsorbed by the belt is collected into a holding area located behind the belt. Oil carried up the belt is recovered at the top of the system by a squeeze belt or scraper blade. It is then pumped into a storage container. These skimmers cannot operate in shallow waters or tight areas.

Slurry – A suspension of particles in water.

Solubility – The amount or fraction of a substance (e.g., oil) that dissolves into the water column, measured in ppm.

Solvent – A chemical agent that will dissolve oil.

Specific gravity – The measure of the density of a substance such as oil or sea water, usually determined at 20°C, compared to the density of pure water at 4°C. Thus, specific gravity varies slightly with temperature.

Sorbent – All sorbent materials work on the same principles—oil adheres to the outside of the material or sorbs into the material by capillary action. There are three basic types of sorbent materials: mineral based, natural organic, and synthetic organic. Currently, only synthetic organic sorbents are being used in the field in the form of booms, pads, and mops. Peat is currently in the testing and demonstration phase.

Stain – Oil that is visibly present but cannot be scraped off with a fingernail.

Substrate – The substance, base, or nutrient on which, or the medium in which, an organism lives and grows, or the surface to which a fixed organism is attached; e.g., soil, rocks, and water.

Substrate penetration – Vertical distance from surface to where oil has percolated into the substrate.

Subtidal – That part of the coastal zone that lies below the lowest low-tide level, so that it is always underwater.

Sump – A pit or reservoir that serves as a drain from which oil can be collected.

Supratidal – Above the normal high-tide line.

Tank barge – A barge for transporting liquids.

Tarballs – Lumps of oil (<10 cm in diameter) weathered to a high density semisolid state.

Tidal variation or range – The vertical distance between high and low tides.

Toxicity – The inherent potential or capacity of a material (e.g., oil) to cause adverse effects in a living organism (Rand and Petrocelli, 1985).

Viscosity – Flow resistance; referring to internal friction of a substance (e.g., oil) that is a function of the oil type and temperature.

Vacuum systems – Used to recover oil collected behind containment booms along the beach face and in the water during shoreline flushing operations. Where equipment access allows, vacuums can be used to remove pools of oil directly from shorelines and surfaces of heavily oiled rocks. Two vacuum systems currently in use are described below. The first system is classified as a vacuum device, but requires a high-velocity air stream, @ 150 mph, to draw oil, water, and debris into the unit's collection chamber. Due to the 6- to 12-inch diameter of the inlet hose, it rarely becomes clogged by debris. The inlet nozzle should always be placed slightly above (never below) the fluid's surface. The distance at which it is held above the fluid is critical to limit the amount of water intake. This system is suitable for picking up weathered oil, tar balls, and mousse from water or shorelines, and to vacuum oil from skimming vessels, boomed areas, or debrisladen sites. The primary advantage is its ability to pick up oil of any viscosity and, where necessary, lift fluid more than 30 feet. The system can pick up and decant simultaneously. The main disadvantages are that it usually picks up a high water/oil ratio, and can be difficult to repair in the field. The second system, barge-mounted vacuum trucks, use high-suction pumps and a cylindrical chamber capable of sustaining very low internal pressure, i.e., minus 12 psi. Vacuum is created in the chamber, and a 3- to 4-inch diameter hose is usually placed slightly below the surface of a floating oil slick, allowing a mixture of water and oil to enter the collection chamber. The position of the open end of the vacuum hose is critical. If it is placed too far down into the oil slick, recovered fluid will be mostly water; if not deep enough, air will be sucked into the system, and much of the vacuum will be lost. The primary advantages of the vacuum truck system are: it can recover fluid of nearly any viscosity; it has a rapid pickup rate of thick oil layers; and it can recover a wide variety of small debris. Primary disadvantages are its limited lift, no more than 20 to 30 feet, and the length of time required to reestablish a vacuum if air enters the hose. As with the other vacuum, this one also picks up a high water/oil ratio.

Weathering – Natural influences such as temperature, wind, and bacteria that alter the physical and chemical properties of oil.

Weir – A vertical barrier placed just below the surface of the water so that a floating oil slick can flow over the top.

Wetlands (as defined by the Annotated Code of Maryland Title 9) – <u>State</u> <u>wetlands:</u> Lands below the mean high-tide line affected by the regular rise of tide. <u>Private wetlands:</u> Lands bordering on state tidal wetlands, below the mean tide line subject to the effects of the regular rise and fall of tide. Lands able to support growth of wetland vegetation. Lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, and is at least periodically saturated with or covered by water (Cowardin et al., 1979).

Wrack – Accumulations of plant debris that is deposited at or above the high-tide line (e.g., *Spartina* or kelp debris).

9420 D Attachment D: Additional References

- American Petroleum Institute. 1982. Oil Spill Response: Options For Minimizing Adverse Ecological Impacts. Publication No. 4398. Washington, D.C.: American Petroleum Institute. 98 pp.
- Bobra, M., P. Kawamura, M. Fingas, and D. Velicogna. 1987. Laboratory and mesoscale testing of Elastol and Brand M demoussifer. *Proceedings of the 10th Arctic and Marine Oil Spill Program Technical Seminar, June 9-11, 1987.* Edmonton, Alberta, Canada. pp. 223241.
- Breuel, A. 1981. *Oil Spill Cleanup and Protection Techniques for Shorelines and Marshlands*. Park Ridge, New Jersey: Noyes Data Corp. 404 pp.
- Cairns, J., Jr. and A.L. Buikema, Jr. (Eds.). 1984. *Restoration of Habitats Impacted by Oil Spills*. Boston: Butterworth Publishers.
- CONCAWE. 1987. A Field Guide To Coastal Oil Spill Control And Clean-up Techniques. The Hague, The Netherlands: 112 pp.
- Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Washington, D.C.: U.S. Fish and Wildlife Service. 103 pp.
- Environment Canada. 1992. Oilspill SCAT Manual for the Coastlines of British Columbia. Edmonton, Alberta: Technology Development Branch, Conservation and Protection. 245 pp.
- DOI. 1991. Wildlife Protection Guideline for Alaska. Tab D to Annex X of the Alaska Region Oil and Hazardous Substances Pollution Contingency Plan. Anchorage: U.S. Department of the Interior. 229 pp.
- ERCE and PENTEC. 1991. Evaluation of the condition of intertidal and shallow subtidal biota in Prince William Sound following the *Exxon Valdez* oil spill and subsequent shoreline treatment. Seattle, Wash. Report HMRAD 91-1. Seattle: Hazardous Materials Response and Assessment Division, National Oceanic and Atmospheric Administration. Two Volumes. Fiocco, R.J., G.P. Canevari, J.B. Wilkinson, J. Bock, M. Robbins, H.O. Jahns, and R.K. Markarian. 1991. Development of Corexit 9580–A chemical beach cleaner. *Proceedings of the 1991 International Oil Spill Conference, March 4-7, 1991, San Diego, California*. API Publication No. 4529, Washington, D.C.: American Petroleum Institute, pp. 395-400.
- Hayes, M.O., E.R. Gundlach, and C.D. Getter. 1980. Sensitivity ranking of energy port shorelines. *Proceedings of the Specialty Conference on Ports '80, May 19-20, 1980, Norfolk, Virginia*, pp. 697-708.
- Hayes, M.O., J. Michel, and B. Fichaut. 1991. Oiled gravel beaches: A special problem. Proceedings of the Specialty Conference on Oil Spills, Management and Legislative Implications, published by American Society of Civil Engineers pp. 444-457.

Change 21 January 1, 2020

- Interagency Shoreline Cleanup Committee. 1989. Field Shoreline Treatment Manual. Valdez, Alaska: National Oceanic and Atmospheric Administration, Alaska Department of Environmental Conservation, Alaska Department of Fish and Game, U.S. Fish and Wildlife Service, U.S. Environmental Protection Agency, and Exxon.
- Meyers & Associates and RPI, Inc. 1989. *Oil Spill Response Guide*. Park Ridge, New Jersey: Noyes Data Corp. 314 pp.
- National Research Council. 1989. Using Oil Spill Dispersants on the Sea. Washington, D.C.: National Academy Press. 335 pp.
- National Oceanic and Atmospheric Administration. 1992. Introduction to coastal habitats and biological resources for oil spill response. Report HMRAD 92-4. Seattle: Hazardous Materials Response and Assessment Division, NOAA. 384 pp.
- Nauman, S.A. 1991. Shoreline Cleanup: Equipment and Operations. Proceedings of the 1991 International Oil Spill Conference, March 4-7, 1991, San Diego, California. Washington, D.C.: American Petroleum Institute. pp. 1411-1417.
- Owens, E.H. and A.R. Teal. 1990. Shoreline cleanup following the *Exxon Valdez* oil spill-field data collection within the SCAT program. *Proceedings of the 13th Arctic and Marine Oil Spill Program Technical Seminar, June 6- 8, 1990, Edmonton, Alberta, Canada, pp. 411-421.*
- Prince, R.C., J.R. Clark, and J.E. Linstrom. 1990. Bioremediation Monitoring Program. Anchorage: Exxon, U.S. Environmental Protection Agency, Alaska Department of Environmental Conservation. 85 pp. plus appendices.
- Rand, G. M. and S. R. Petrocelli. 1985. Fundamentals of Aquatic Toxicology. Washington, D. C.: Hemisphere Publishing Company. 666 pp.
- Rooney-Char, A.H., R.W. Middleton, A.T. Fritz, and M.L. Vance. 1983a. ESI Atlas of Maryland. Seattle: Hazardous Materials Response and Assessment Division, National Oceanic and Atmospheric Administration. 119 maps.
- Rooney-Char, A.H., A.T. Fritz, M.L. Vance, R.W. Middleton, and J. Baker. 1983b. ESI Atlas of Virginia. Seattle: Hazardous Materials Response and Assessment Division, National Oceanic and Atmospheric Administration. 113 maps.
- Rooney-Char, A.H., M.L. Vance, A.T. Fritz, and R.W. Middleton. 1983c. ESI Atlas of North Carolina. Seattle: Hazardous Materials Response and Assessment Division, National Oceanic and Atmospheric Administration. 113 maps.
- Sanders, N. and E. Gray. Alaska Oil Spill Bioremediation Project Workshop Summary. Rockville, Maryland: Technical Resources, Inc. 8 pp.

- Tetra Tech. 1982. Ecological Impacts of Oil Spill Cleanup: Review and Recommendations. Draft report. Washington, D.C.: American Petroleum Institute.
- U.S. Congress, Office of Technology Assessment. 1991. Bioremediation for Marine Oil Spills - Background Paper. OTA-BP-0-70. Washington, D.C.: U.S. Government Printing Office. 31 pp.