RPSGROUP.COM

REGIONAL RESPONSE TEAM 9 (RRT-9) AUGUST WEBINAR

AUGUST 19, 2020

OILMAP A PLANNING TOOL FOR REMOTE TESTING OF SENSITIVE SITE STRATEGIES

Gabrielle McGrath

Senior Scientist / Senior Project Manager

- 26 years on Active Duty in the U.S. Coast Guard, retired in 2018
- Served as Central Coast Area Committee Co-Chair and San Francisco Bay and Delta Area Committee Assistant Co-Chair
- Full rewrite of ACPs when serving as Chief, Marine Environmental Response, USCG Sector San Francisco
- Worked at RPS since July 2018
- Currently leading 5-year project with BSEE to develop offshore response information for RCPs/ACP

Gabrielle.McGrath@rpsgroup.com

Andrew Menton

Senior Software Development Project Manager

- Worked at RPS since March 2010
- Background in Software Engineering
- Manages the development and deployment of desktop and web based products; OILMAP, SARMAP, OceansMap, etc.
- Nationality: Irish

Andrew.Menton@rpsgroup.com

RPS OCEAN SCIENCE

- Formerly known as Applied Science Associates. Environmental scientists and engineers, based in South Kingstown, Rhode Island.
- Member of the RPS Group since October 2011.
- RPS is a global science and technology solutions company. Through consulting, environmental modeling, and application development, RPS helps a diverse range of clients solve their issues of concern.
- Since 1979 and in over 150 countries, RPS provides services and custom solutions to sectors including energy, environment, construction, defense, security, emergency management, transportation, and shipping.
- Significant work Deepwater Horizon NRDA, Deep Water Port applications, EIAs, etc.
- Developers and users of OILMAP, commercially-available oil spill model for 30 years.

COMPANY INTRODUCTION

MARKETS SERVED

- Government Agencies, Worldwide
- Oil & Gas Industry
- Port, Harbor, and Coastal
- Renewable Energy
- Power Generation & Distribution
- Dredging & Pipeline Burial
- Water Resources
- Water Quality
- Ecological Risk Assessment
- Environmental Data Systems
- Geospatial Application Development
- Coastal Hazards Assessment
- Operational Forecasting

USES OF OILMAP

- EMERGENCY OIL SPILL RESPONSE
 DECISION SUPPORT
- OIL SPILL DRILLS AND EXERCISES
- OIL SPILL RESPONSE TRAINING
- PRE-POSITIONING OF RESPONSE CAPABILITIES
- LITIGATION SUPPORT
- CONTINGENCY PLANNING
- MANAGEMENT OF SPILL-RELATED DATA
- HINDCASTING
- WELL BLOW-OUT MODELING
- SENSITIVE SITE TESTING

BACKGROUND

- ACPs include Sensitive Site Strategies.
- For Sensitive Sites Testing in California, CA DFW OSPR leads the SSSEP (Sensitive Site Strategy Evaluation Program).
- Challenges of testing sensitive site strategies:

ØMan hours

ØSafety risk

Social distancing requirements

ØRegulatory consultations

- OILMAP can reduce physical challenges of field deployments by enabling the user to test multiple strategies under different conditions within minutes from an office environment
- Benefits FOSC, State, Facility Owners, Public, Natural Resource Trustees, etc.

Containment of an oil spill with a boom near the Golden Gate Bridge, San Francisco, Nov 2007. Photo: Megan Jankowski / Marine Photobank

U.S. COAST GUARD AND OILMAP

- OILMAP includes unique capability of testing response strategies, including booming, skimming, and dispersants.
- OILMAP is perfect tool to test Sensitive Site Strategies without field deployments.
- USCG already subscribes to on-demand weather forecasts which drive the model.
- Currently being used by USCG Exercise Support Team for all PREPEX since 2015.
- Meets all USCG IT requirements.
- USCG D1 (Boston, MA), D5 (Portsmouth, VA), and Coast Guard Academy (CGA) purchasing OILMAP in FY20.
- CGA cadets tested Sector Delaware Bay Geographic Response Strategies as Directed Studies project in 2019-2020.

U.S. COAST GUARD AND OILMAP

- Meets requirements of CG-MER Manual for Geographic Response Strategy (GRS) Validation Levels 1 and 2.
- "Supplemented with computer simulations."

Validation Level	Name	Description	Requirements
I	Desktop	Evaluation of GRS data by subject matter experts (i.e., natural resource trustees) in an office or workshop setting.	All data should attain Level validation.
		computer simulations. Deployment of subject	
п	Visual Confirmation	matter experts to specified geographic area. Visual inspection of operational environment and verification of tactical strategies. No equipment deployment.	Targeted for moderate to high-risk areas where a degree of uncertainty exists.
		Can be supplemented with computer simulations.	
ш	Equipment Deployment	Deployment of identified equipment to verify its performance in the specified operating environment.	Targeted for inconclusive Level II validation strategie Performed in high-risk area where rapid and efficient response is critical.
IV	Full Scale Exercise (FSE)	Deployment of all appropriate response personnel and equipment under an area full scale exercise setting.	As dictated by the area exercise design/objectives.
v	Incident	Deployment of all appropriate response personnel and equipment	Real world event.

MODELING RESPONSE STRATEGIES WITH OILMAP

OILMAP SOFTWARE

ENVIRONMENTAL INPUTS TO OILMAP: CURRENTS

 Data distributed by RPS' Environmental Data Server (EDS)

Example uses regional ADCIRC current model

ENVIRONMENTAL INPUTS TO OILMAP: WINDS

 Data distributed by RPS' Environmental Data Server (EDS)

Model Forecasts

Measurements and Observations

Local, Regional, & Global Datasets Available

Ongoing Integration of New Data Sources

Critical input to trajectory and fate model Spatially- and temporally- varying Downloaded for extent of simulation Wind speed by color/arrow size

• User can define wind field manually

Example uses North America 5km wind model

Capabilities:

- Full 3D Trajectory & Fate Model
- Near-Field Blowout Model
- Air Model
- Integrated GIS
- Blowout plume dynamics
- Response activities

Outputs:

- Oil particle characteristics
- Floating surface oil
- Water column concentrations
- Shoreline oiling
- Evaporated hydrocarbons

OILMAP OUTPUTS

- Trajectory Maps
- Mass Balance
- Surface Area, Viscosity, Volume, Thickness
- All Temporally and Spatially-Varying
- Plots, graphs, tabular data, SHP, and KML exports

RESPONSE ACTIVITIES IN OILMAP

Dispersant Application

Mechanical Recovery

RESPONSE ACTIVITIES

Sample Scenario in San Francisco Bay Using ACP Sensitive Site Strategies

17 ERMA ACP

SCENARIO PARTICULARS

- Tanker loaded with Alaska Crude headed inbound to Chevron Richmond facility collided with outbound tanker in fog
- 14th August 2020
 12:00PM
- 5000 Barrel continuous release over 48 hrs
- (105 per hr)

MODELING RESPONSE STRATEGIES WITH OILMAP – BASIC BASEMAP

MODELING RESPONSE STRATEGIES WITH OILMAP – STREET BASEMAP

MODELING RESPONSE STRATEGIES WITH OILMAP – VIDEO

MODELING RESPONSE STRATEGIES WITH OILMAP

Deploy Time: 10 hours Current Thres: 1 knot Wave Thres: 2 feet Wind Thres: 10 knots

BENEFITS OF TESTING SENSITIVE SITE STRATEGIES WITH COMPUTER SIMULATIONS

- Quickly evaluate a wide range of response activities.
- Assess each response strategy under varying environmental conditions (winds, currents, temperature, salinity).
- Make edits to response strategy based on model results and re-test.
- Compare and assess all strategies.
- More cost-effective, safer, and more efficient than field deployments.
- Better preparation for incidents for inclusion in the ACP for use by all responders.

23 CONCLUSIONS

QUESTIONS?

GABRIELLE McGRATH

Senior Scientist / Senior Project Manager Gabrielle.McGrath@rpsgroup.com

ANDREW MENTON

Senior Software Development Project Manager Andrew.Menton@rpsgroup.com

55 Village Square Drive South Kingstown, RI 02879 rpsgroup.com

